Cite this paper:
CHEN Siyu, QIAO Fangli, HUANG Chuanjiang, SONG Zhenya. Contribution of surface wave-induced vertical mixing to heat content in global upper ocean[J]. HaiyangYuHuZhao, 2020, 38(2): 307-313

Contribution of surface wave-induced vertical mixing to heat content in global upper ocean

CHEN Siyu1,2,3, QIAO Fangli2,3,4, HUANG Chuanjiang2,3,4, SONG Zhenya2,3,4
1 Ocean University of China, Qingdao 266100, China;
2 First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China;
3 Laboratory for Regional Oceanography and Numerical Modeling, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China;
4 Key Laboratory of Marine Sciences and Numerical Modeling, Ministry of Natural Resources, Qingdao 266061, China
Compared with observations, the simulated upper ocean heat content (OHC) determined from climate models shows an underestimation bias. The simulation bias of the average annual water temperature in the upper 300 m is 0.2℃ lower than the observational results. The results from our two numerical experiments, using a CMIP5 model, show that the non-breaking surface wave-induced vertical mixing can reduce this bias. The enhanced vertical mixing increases the OHC in the global upper ocean (65°S-65°N). Using non-breaking surface wave-induced vertical mixing reduced the disparity by 30% to 0.14℃. The heat content increase is not directly induced by air-sea heat fluxes during the simulation period, but is the legacy of temperature increases in the first 150 years. During this period, additional vertical mixing was initially included in the climate model. The non-breaking surface wave-induced vertical mixing improves the OHC by increasing the air-sea heat fluxes in the first 150 years. This increase in air-sea heat fluxes warms the upper ocean by 0.05-0.06℃. The results show that the incorporation of vertical mixing induced by nonbreaking surface waves in our experiments can improve the simulation of OHC in the global upper ocean.
Key words:    surface wave-induced|vertical mixing|upper ocean heat content|air-sea heat fluxes|climate model   
Received: 2019-01-16   Revised: 2019-04-15
PDF (1808 KB) Free
Print this page
Add to favorites
Email this article to others
Articles by CHEN Siyu
Articles by QIAO Fangli
Articles by HUANG Chuanjiang
Articles by SONG Zhenya
Abraham J P, Baringer M, Bindoff N L, Boyer T, Cheng L J, Church J A, Conroy J L, Domingues C M, Fasullo J T, Gilson J, Goni G, Good S A, Gorman J M, Gouretski V, Ishii M, Johnson G C, Kizu S, Lyman J M, Macdonald A M, Minkowycz W J, Moffitt S E, Palmer M D, Piola A R, Reseghetti F, Schuckmann K, Trenberth K E, Velicogna I, Willis J K. 2013. A review of global ocean temperature observations:implications for ocean heat content estimates and climate change. Rev. Geophys., 51(3):450-483.
AchutaRao K M, Ishii M, Santer B D, Gleckler P J, Taylor K E, Barnett T P, Pierce D W, Stouffer R J, Wigley T M. 2007. Simulated and observed variability in ocean temperature and heat content. Proc. Natl. Acad. Sci. USA, 104(26):10 768-10 773.
Balmaseda M A, Trenberth K E, Källén E. 2013. Distinctive climate signals in reanalysis of global ocean heat content.Geophys. Res. Lett., 40(9):1 754-1 759.
Chen S Y, Qiao F L, Huang C J, Song Z Y. 2018. Effects of the non-breaking surface wave-induced vertical mixing on winter mixed layer depth in subtropical regions.J. Geophys. Res.:Oceans, 123(4):2 934-2 944,
Church J A, White N J, Arblaster J M. 2005. Significant decadal-scale impact of volcanic eruptions on sea level and ocean heat content. Nature, 438(7064):74-77.
Delworth T L, Ramaswamy V, Stenchikov G L. 2005. The impact of aerosols on simulated ocean temperature and heat content in the 20th century. Geophys. Res. Lett., 32(24):L24709.
Domingues C M, Church J A, White N J, Gleckler P J, Wijffels S E, Barker P M, Dunn J R. 2008. Improved estimates of upper-ocean warming and multi-decadal sea-level rise.Nature, 453(7198):1 090-1 093.
Fan Y L, Griffies S M. 2014. Impacts of parameterized langmuir turbulence and nonbreaking wave mixing in global climate simulations. J. Climate, 27(12):4 752-4 775.
Geoffroy O, Saint-Martin D, Olivié D J L, Voldoire A, Bellon G, Tytéca S. 2013. Transient climate response in a twolayer energy-balance model. Part I:analytical solution and parameter calibration using CMIP5 AOGCM experiments. J. Climate, 26(6):1 841-1 857.
Gleckler P J, AchutaRao K, Gregory J M, Santer S D, Taylor K E, Wigley T M L. 2006. Krakatoa lives:the effect of volcanic eruptions on ocean heat content and thermal expansion. Geophys. Res. Lett. 33(17):L17702.
Good S A, Martin M J, Rayner N A. 2013. EN4:quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates.J. Geophys. Res.:Oceans, 118(12):6 704-6 716.
Gregory J M, Banks H T, Stott P A, Lowe J A, Palmer M D. 2004. Simulated and observed decadal variability in ocean heat content. Geophys. Res. Lett., 31(15):L15312.
Huang C J, Qiao F L, Dai D J. 2014. Evaluating CMIP5 simulations of mixed layer depth during summer. J. Geophys. Res.:Oceans, 119(4):2 568-2 582.
Huang C J, Qiao F L, Shu Q, Song Z Y. 2012. Evaluating austral summer mixed-layer response to surface wave-induced mixing in the Southern Ocean. J. Geophys. Res.:Oceans, 117(C11):C00J18.
Jin F F. 1997. An equatorial ocean recharge paradigm for ENSO. Part I:conceptual model. J. Atmos. Sci., 54(7):811-829.
Kuhlbrodt T, Gregory J M. 2012. Ocean heat uptake and its consequences for the magnitude of sea level rise and climate change. Geophys. Res. Lett., 39(18):L18608.
Locarnini R A, Mishonov A V, Antonov J I, Garcia H E, Baranova O K, Zweng M M, Johnson D R. 2010. World ocean atlas 2009, volume 1:temperature. In:Levitus S ed.NOAA Atlas NESDIS 68, U.S. Government Printing Office, Washington DC, USA. 184p.
Meehl G A, Arblaster J M, Fasullo J T, Hu A X, Trenberth K E. 2011. Model-based evidence of deep-ocean heat uptake during surface-temperature hiatus periods. Nat. Climate Change, 1(7):360-364.
Palmer M D, McNeall D J. 2014. Internal variability of Earth's energy budget simulated by CMIP5 climate models.Environ. Res. Lett., 9(3):034016.
Qiao F L, Song Z Y, Bao Y, Song Y J, Shu Q, Huang C J, Zhao W. 2013. Development and evaluation of an earth system model with surface gravity waves. J. Geophys. Res.:Oceans, 118(9):4 514-4 524.
Rayner N A, Brohan P, Parker D E, Folland C K, Kennedy J J, Vanicek M, Ansell T J, Tett S F B. 2006. Improved analyses of changes and uncertainties in sea surface temperature measured in situ since the mid-nineteenth century:the HadSST2 dataset. J. Climate, 19(3):446-469.
Roberts C D, Palmer M D, McNeall D, Collins M. 2015.Quantifying the likelihood of a continued hiatus in global warming. Nat. Climate Change, 5(4):337-342.
Stoney L, Walsh K J, Thomas S, Spence P, Babanin A V. 2018.Changes in ocean heat content caused by wave-induced mixing in a high-resolution ocean model. J. Phys.Oceanogr., 48(5):1 139-1 150.
Von Schuckmann K, Palmer M D, Trenberth K E, Cazenave T A, Chambers C D, Champollion N, Hansen J, Josey S A, Loeb N, Mathieu P P, Meyssignac B, Wild M. 2016. An imperative to monitor earth's energy imbalance. Nat.Climate Change, 6(2):138-144.
Williams R G, Roussenov V, Lozier M S, Smith D. 2015.Mechanisms of heat content and thermocline change in the subtropical and subpolar North Atlantic. J. Climate, 28(24):9 803-9 815.