Cite this paper:
YU Yu, LI Kecheng. Adsorption characteristics of chitooligosaccharides onto activated charcoal in aqueous solutions[J]. HaiyangYuHuZhao, 2020, 38(2): 342-350

Adsorption characteristics of chitooligosaccharides onto activated charcoal in aqueous solutions

YU Yu1, LI Kecheng2,3
1 Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China;
2 Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China;
3 Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
To investigate the adsorption characteristics of chitooligosaccharides in solution onto activated charcoal, we studied the optimal adsorption conditions and the adsorption mechanisms of the chitooligosaccharides onto activated charcoal, which will greatly promote the application of activated charcoal in the chitooligosaccharides separation and purification. We studied the effects of particle size of activated charcoal, pH of solution, contact time, temperature, and initial concentration of chitooligosaccharides on the adsorption behavior in batch mode experiments. Activated charcoal in fine particle size showed a high uptake of chitooligosaccharides. Weak alkaline solution (pH 8-9) was the most favorable to the adsorption. The adsorption equilibrium after 60 min was established, which followed a pseudo-second-order kinetic model. The adsorption capacity (Qmax) reached 0.195 g/g (chitooligosaccharides/activated charcoal) at 298 K. The adsorption was temperature-insensitive, and the adsorption isotherms could be best described by the Langmuir equation. Chitooligosaccharides adsorbed on activated charcoal could be desorbed in 50% ethanol solution in combination with an acidic condition (pH 2), reaching desorption efficiency of 96.0%. These findings are of great significance for the production and purification of amino oligosaccharides including chitooligosaccharides using activated charcoal.
Key words:    chitooligosaccharide|adsorption|activated charcoal|kinetics|isotherm   
Received: 2018-11-13   Revised: 2019-05-06
PDF (871 KB) Free
Print this page
Add to favorites
Email this article to others
Articles by YU Yu
Articles by LI Kecheng
Acemioğlu B. 2005. Batch kinetic study of sorption of methylene blue by perlite. Chemical Engineering Journal, 106(1):73-81.
Aksu Z, Yener J. 2001. A comparative adsorption/biosorption study of mono-chlorinated phenols onto various sorbents.Waste Management, 21(8):695-702.
Benhabiles M S, Salah R, Lounici H, Drouiche N, Goosen M F A, Mameri N. 2012. Antibacterial activity of chitin, chitosan and its oligomers prepared from shrimp shell waste. Food Hydrocolloids, 29(1):48-56.
Canilha L, De Almeida e Silva J B, Solenzal A I N. 2004.Eucalyptus hydrolysate detoxification with activated charcoal adsorption or ion-exchange resins for xylitol production. Process Biochemistry, 39(12):1 909-1 912.
Chingombe P, Saha B, Wakeman R J. 2005. Surface modification and characterisation of a coal-based activated carbon. Carbon, 43(15):3 132-3 143.
Domard A. 2011. A perspective on 30 years research on chitin and chitosan. Carbohydrate Polymers, 84(2):696-703.
Dubois M, Gilles K A, Hamilton J K, Rebers P A, Smith F. 1956. Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3):350-356.
Duy N N, Van Phu D, Anh N T, Hien N Q. 2011. Synergistic degradation to prepare oligochitosan by γ-irradiation of chitosan solution in the presence of hydrogen peroxide.Radiation Physics and Chemistry, 80(7):848-853.
Einbu A, Vårum K M. 2008. Characterization of chitin and its hydrolysis to GlcNAc and GlcN. Biomacromolecules, 9(7):1 870-1 875.
Fu K F. 2018. Preparation, Characterization and Application of Lignin-Based Activated Carbons from Black Liquor.Shandong University, Jinan. (in Chinese)
Fujimoto Y, Hattori T, Uno S, Murata T, Usui T. 2009.Enzymatic synthesis of gentiooligosaccharides by transglycosylation with β-glycosidases from Penicillium multicolor. Carbohydrate Research, 344(8):972-978.
Fytianos K, Voudrias E, Kokkalis E. 2000. Sorption-desorption behaviour of 2, 4-dichlorophenol by marine sediments.Chemosphere, 40(1):3-6.
Ho Y S, McKay G. 1999. Pseudo-second order model for sorption processes. Process Biochemistry, 34(5):451-465.
Kim K W, Thomas R L. 2007. Antioxidative activity of chitosans with varying molecular weights. Food Chemistry, 101(1):308-313.
Kim S, Rajapakse N. 2005. Enzymatic production and biological activities of chitosan oligosaccharides (COS):A review. Carbohydrate Polymers, 62(4):357-368.
Kittur F S, Kumar A B V, Varadaraj M C, Tharanathan R N. 2005. Chitooligosaccharides-preparation with the aid of pectinase isozyme from Aspergillus niger and their antibacterial activity. Carbohydrate Research, 340(6):1 239-1 245.
Langmuir I. 1916. The constitution and fundamental properties of solids and liquids. Part I. Solids. Journal of the American Chemical Society, 38(11):2 221-2 295.
Laroche C, Delattre C, Mati-Baouche N, Salah R, Ursu A V, Moulti-Mati F, Michaud P, Pierre G. 2018. Bioactivity of chitosan and its derivatives. Current Organic Chemistry, 22(7):641-667.
Le Dévédec F, Bazinet L, Furtos A, Venne K, Brunet S, Mateescu M. 2008. Separation of chitosan oligomers by immobilized metal affinity chromatography. Journal of Chromatography A, 1194(2):165-171.
Li K C, Liu S, Xing R G, Qin Y K, Li P C. 2013a. Preparation, characterization and antioxidant activity of two partially N-acetylated chitotrioses. Carbohydrate Polymers, 92(2):1 730-1 736.
Li K C, Liu S, Xing R G, Yu H H, Qin Y K, Li P C. 2015. Liquid phase adsorption behavior of inulin-type fructan onto activated charcoal. Carbohydrate Polymers, 122:237-242.
Li K C, Liu S, Xing R G, Yu H H, Qin Y K, Li R F, Li P C. 2013b. High-resolution separation of homogeneous chitooligomers series from 2-mers to 7-mers by ionexchange chromatography. Journal of Separation Science, 36(7):1 275-1 282.
Li K C, Xing R G, Liu S, Li P C. 2016. Advances in preparation, analysis and biological activities of single chitooligosaccharides. Carbohydrate Polymers, 139:178-190.
Li K C, Xing R G, Liu S, Li R F, Qin Y K, Meng X T, Li P C. 2012a. Separation of chito-oligomers with several degrees of polymerization and study of their antioxidant activity.Carbohydrate Polymers, 88(3):896-903.
Li K C, Xing R G, Liu S, Qin Y K, Li B, Wang X Q, Li P C. 2012b. Separation and scavenging superoxide radical activity of chitooligomers with degree of polymerization 6-16. International Journal of Biological Macromolecules, 51(5):826-830.
Li K C, Xing R G, Liu S, Qin Y K, Meng X T, Li P C. 2012c.Microwave-assisted degradation of chitosan for a possible use in inhibiting crop pathogenic fungi. International Journal of Biological Macromolecules, 51(5):767-773.
Liaqat F, Eltem R. 2018. Chitooligosaccharides and their biological activities:A comprehensive review.Carbohydrate Polymers, 184:243-259.
Ma J W, Wang H, Wang F Y, Huang Z H. 2010. Adsorption of 2, 4-dichlorophenol from aqueous solution by a new lowcost adsorbent-activated bamboo charcoal. Separation Science and Technology, 45(16):2 329-2 336.
Mengíbar M, Ganan M, Miralles B, Carrascosa A V, MartínezRodriguez A J, Peter M G, Heras A. 2011. Antibacterial activity of products of depolymerization of chitosans with lysozyme and chitosanase against Campylobacter jejuni.Carbohydrate Polymers, 84(2):844-848.
Muzzarelli R A A. 2010. Chitins and chitosans as immunoadjuvants and non-allergenic drug carriers.Marine Drugs, 8(2):292-312.
Ngo D N, Kim M M, Kim S K. 2008. Chitin oligosaccharides inhibit oxidative stress in live cells. Carbohydrate Polymers, 74(2):228-234.
Qadeer R. 2012. Concentration effects associated with the kinetics of ruthenium ions adsorption on activated charcoal. Journal of Radioanalytical and Nuclear Chemistry, 295(3):1 649-1 653.
Semeñuk T, Krist P, Pavliček J, Bezouška K, Kuzma M, Novák P, Křen V. 2001. Synthesis of chitooligomer-based glycoconjugates and their binding to the rat natural killer cell activation receptor NKR-P1. Glycoconjugate Journal, 18(10):817-826.
Skodras G, Diamantopoulou I, Pantoleontos G, Sakellaropoulos G P. 2008. Kinetic studies of elemental mercury adsorption in activated carbon fixed bed reactor. Journal of Hazardous Materials, 158(1):1-13.
Tikhonov V E, Stepnova E A, Babak V G, Yamskov I A, PalmaGuerrero J, Jansson H B, Lopez-Llorca L V, Salinas J, Gerasimenko D V, Avdienko I D, Varlamov V P. 2006.Bactericidal and antifungal activities of a low molecular weight chitosan and its N-/2(3)-(dodec-2-enyl)succinoyl/-derivatives. Carbohydrate Polymers, 64(1):66-72.
Tishchenko G, Šimůnek J, Brus J, Netopilík M, Pekárek M, Walterová Z, Koppová I, Lenfeld J. 2011. Low-molecularweight chitosans:Preparation and characterization.Carbohydrate Polymers, 86(2):1 077-1 081.
Tsaih M L, Tseng L Z, Chen R H. 2004. Effects of removing small fragments with ultrafiltration treatment and ultrasonic conditions on the degradation kinetics of chitosan. Polymer Degradation and Stability, 86(1):25-32.
Wei Y A, Hendrix D L, Nieman R. 1997. Diglucomelezitose, a novel pentasaccharide in silverleaf whitefly honeydew.Journal of Agricultural and Food Chemistry, 45(9):3 481-3 486.
Xiong C N, Wu H G, Wei P, Pan M, Tuo Y Q, Kusakabe I, Du Y G. 2009. Potent angiogenic inhibition effects of deacetylated chitohexaose separated from chitooligosaccharides and its mechanism of action in vitro. Carbohydrate Research, 344(15):1 975-1 983.
Xu W H, Jiang C Q, Kong X Y, Liang Y, Rong M, Liu W S. 2012. Chitooligosaccharides and N-acetyl-D-glucosamine stimulate peripheral blood mononuclear cell-mediated antitumor immune responses. Molecular Medicine Reports, 6(2):385-390.
Yang Y, Xing R G, Liu S, Qin Y K, Li K C, Yu H H, Li P C. 2019. Immunostimulatory effects of chitooligosaccharides on RAW 264.7 mouse macrophages via regulation of the MAPK and PI3K/Akt signaling pathways. Marine Drugs, 17(1):36.
Zhao Y Z, Xu G C, Wang S Y, Yi X W, Wu W D. 2018. Chitosan oligosaccharides alleviate PM2.5-induced lung inflammation in rats. Environmental Science and Pollution Research, 25(34):34 221-34 227.