Cite this paper:
MA Chengbo, LI Wenjun, GE Baosheng, LIN Jian, QIN Song. Biosynthesis of phycocyanobilin in recombinant Escherichia coli[J]. Journal of Oceanology and Limnology, 2020, 38(2): 529-538

Biosynthesis of phycocyanobilin in recombinant Escherichia coli

MA Chengbo1, LI Wenjun2,4, GE Baosheng3, LIN Jian1, QIN Song2,4
1 College of Life Sciences, Yantai University, Yantai 264005, China;
2 Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China;
3 Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, China;
4 Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
Abstract:
The recombinant expression of phycocyanobilin (PCB) was carried out in Escherichia coli, and the best fermentation conditions of recombinant E. coli biosynthesized PCB are optimized in the response surface methodology to improve PCB production. The recombinant PCB is extracted, isolated, and purified by methanol and chloroform extraction. Recombinant PCB is validated in UV-vis spectroscopy, high-pressure liquid chromatography, and mass spectrometry. In addition, the anti-oxidant activities of the recombinant PCB are determined. The best induction conditions that optimized by Design Expert 8.0 software include:lactose concentration 4 mmol/L, induction temperature 24.69℃, induction time 4.6 h, and induction duration 13.57 h, under which the PCB expression level reached approximately 13 mg PCB/L, which is more than four times of previously reported 3 mg PCB/L. The maximum absorption peak of the recombinant PCB is located at 680 nm with a high fluorescence intensity of 470 nm. The recombinant PCB has a good ability to scavenge 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radicals.
Key words:    combinational biosynthesis|phycocyanobilin|response surface methodology|antioxidant   
Received: 2019-03-12   Revised: 2019-05-08
Tools
PDF (1934 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by MA Chengbo
Articles by LI Wenjun
Articles by GE Baosheng
Articles by LIN Jian
Articles by QIN Song
References:
Adir N. 2005. Elucidation of the molecular structures of components of the phycobilisome:reconstructing a giant.Photosynthesis Research, 85(1):15-32.
Alvey R M, Biswas A, Schluchter W M, Bryant D A. 2011.Attachment of noncognate chromophores to CpcA of Synechocystis sp. PCC 6803 and Synechococcus sp. PCC 7002 by heterologous expression in Escherichia coli.Biochemistry, 50(22):4 890-4 902.
Basdeo S A, Campbell N K, Sullivan L M, Flood B, Creagh E M, Mantle T J, Fletcher J M, Dunne A. 2016. Suppression of human alloreactive T cells by linear tetrapyrroles;relevance for transplantation. Translational Research, 178:81-94.e2.
Benedetti S, Benvenuti F, Scoglio S, Canestrari F. 2010.Oxygen radical absorbance capacity of phycocyanin and phycocyanobilin from the food supplement Aphanizomenon flos-aquae. Journal of Medicinal Food, 13(1):223-227.
Bennett A, Bogorad L. 1973. Complementary chromatic adaptation in a filamentous blue-green alga. Journal of Cell Biology, 58(2):419-435.
Beuhler R J, Pierce R C, Friedman L, Siegelman H W. 1976.Cleavage of phycocyanobilin from C-phycocyanin.Separation and mass spectral identification of the products. Journal of Biological Chemistry, 251(8):2 405-2 411.
Blois M S. 1958. Antioxidant determinations by the use of a stable free radical. Nature, 181(4617):1 199-1 200.
Carra P Ó, Heocha C Ó. 1966. Bilins released from algae and biliproteins by methanolic extraction. Phytochemistry, 5(5):993-997.
De Montellano P R O. 2000. The mechanism of heme oxygenase. Current Opinion in Chemical Biology, 4(2):221-227.
Frankenberg N, Lagarias J C. 2003. Phycocyanobilin:ferredoxin oxidoreductase of Anabaena sp. PCC 7120 biochemical and spectroscopic characterization. Journal of Biological Chemistry, 278(11):9 219-9 226.
Gambetta G A, Lagarias J C. 2001. Genetic engineering of phytochrome biosynthesis in bacteria. Proceedings of the National Academy of Sciences of the United States of America, 98(19):10 566-10 571.
Ge B S, Chen Y, Yu Q, Lin X J, Li J Q, Qin S. 2018. Regulation of the heme biosynthetic pathway for combinational biosynthesis of phycocyanobilin in Escherichia coli.Process Biochemistry, 71:23-30.
Ge B S, Li Y, Sun H X, Zhang S, Hu P J, Qin S, Huang F. 2013.Combinational biosynthesis of phycocyanobilin using genetically-engineered Escherichia coli. Biotechnology Letters, 35(5):689-693.
Glazer A N, Fang S. 1973. Chromophore content of blue-green algal phycobiliproteins. Journal of Biological Chemistry, 248(2):659-662.
Jobe A, Bourgeois S. 1972. Lac repressor-operator interaction:VI. The natural inducer of the lac operon. Journal of Molecular Biology, 69(3):397-408.
Lee K M, Gilmore D F. 2006. Statistical experimental design for bioprocess modeling and optimization analysis.Applied Biochemistry and Biotechnology, 135(2):101-115.
Müller-Hill B, Rickenberg H V, Wallenfels K. 1964. Specificity of the induction of the enzymes of the lac operon in Escherichia coli. Journal of Molecular Biology, 10(2):303-318.
MacColl R. 1998. Cyanobacterial phycobilisomes. Journal of Structural Biology, 124(2-3):311-334.
Marín-Prida J, Pavón-Fuentes N, Llópiz-Arzuaga A, Fernández-Massó J R, Delgado-Roche L, Mendoza-Marí Y, Santana S P, Cruz-Ramírez A, Valenzuela-Silva C, Nazábal-Gálvez M, Cintado-Benítez A, Pardo-Andreu G L, Polentarutti N, Riva F, Pentón-Arias E, Pentón-Rol G. 2013. Phycocyanobilin promotes PC12 cell survival and modulates immune and inflammatory genes and oxidative stress markers in acute cerebral hypoperfusion in rats.Toxicology and Applied Pharmacology, 272(1):49-60.
McCann D, Barrett A, Cooper A, Crumpler D, Dalen L, Grimshaw K, Kitchin E, Lok K, Porteous L, Prince E, Sonuga-Barke E, Warner J O, Stevenson J. 2007. Food additives and hyperactive behaviour in 3-year-old and 8/9-year-old children in the community:a randomised, double-blinded, placebo-controlled trial. The Lancet, 370(9598):1 560-1 567.
Mccarty M F, Barroso-Aranda J, Contreras F. 2010a. NAPDH oxidase mediates glucolipotoxicity-induced beta cell dysfunction-clinical implications. Medical Hypotheses, 74(3):596-600.
McCarty M F, Barroso-Aranda J, Contreras F. 2010b. Oral phycocyanobilin may diminish the pathogenicity of activated brain microglia in neurodegenerative disorders.Medical Hypotheses, 74(3):601-605.
O'Carra P, Murphy R F, Killilea S D. 1980. The native forms of the phycobilin chromophores of algal biliproteins. A clarification. Biochemical Journal, 187(2):303-309.
Qaiser H, Aslam F, Iftikhar S, Farooq A. 2018. Construction and recombinant expression of Pseudomonas aeruginosa truncated exotoxin A in Escherichia coli. Cellular and Molecular Biology, 64(1):64-69.
Romay C, Armesto J, Remirez D, González R, Ledon N, García N L. 1998. Antioxidant and anti-inflammatory properties of C-phycocyanin from blue-green algae.Inflammation Research, 47(1):36-41.
Romay C, González R, Ledón N, Remirez D, Rimbau V. 2003.C-phycocyanin:a biliprotein with antioxidant, antiinflammatory and neuroprotective effects. Current Protein& Peptide Science, 4(3):207-216.
Sotiroudis T G, Sotiroudis G T. 2013. Health aspects of Spirulina (Arthrospira) microalga food supplement.Journal of the Serbian Chemical Society, 78(3):395-405.
Willows R D, Mayer S M, Foulk M S, DeLong A, Hanson K, Chory J, Beale S I. 2000. Phytobilin biosynthesis:the Synechocystis sp. PCC 6803 heme oxygenase-encoding ho1 gene complements a phytochrome-deficient Arabidopsis thaliana hy1 mutant. Plant Molecular Biology, 43(1):113-120.
Copyright © Haiyang Xuebao