Cite this paper:
LI Dong, ZHAO Jun, LIU Chenggang, SUN Chengjun, CHEN Jianfang, PAN Jianming, HAN Zhengbing, HU Ji. Comparison of sedimentary organic carbon loading in the Yap Trench and other marine environments[J]. HaiyangYuHuZhao, 2020, 38(3): 619-633

Comparison of sedimentary organic carbon loading in the Yap Trench and other marine environments

LI Dong1, ZHAO Jun1, LIU Chenggang1, SUN Chengjun2, CHEN Jianfang1, PAN Jianming1, HAN Zhengbing1, HU Ji1
1 Key Laboratory of Marine Ecosystem and Biogeochemistry, State Oceanic Administration, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China;
2 Key Laboratory of Marine Eco-environmental Science and Technology, Marine Bioresource and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
Abstract:
Knowledge about organic carbon loadings (ratio of sedimentary organic carbon (SOC) content to specific surface area (SSA)) and the fate of organic carbon (OC) is critical to understand the marine carbon cycle. We investigated the variations in the patterns of OC loadings and the preservation capacities of sedimentary OC in the Yap Trench and other marine environments. The average OC loading in sediment cores from various marine environments decreases with increasing water depth at a rate of ~0.06 mg OC/ (m2·km) (R2=0.23, P<0.01). Distinct low OC loadings (0.09±0.04 mg OC/m2) were observed in the Yap Trench, with the lowest values as ~0.02 mg OC/m2. A further comparative analysis indicated that OC/ SSA=0.2 mg OC/m2 is a good indicator to distinguish between oxic deep-sea regions and suboxic energetic deltaic areas. Regression analysis between OC loading and bulk carbon isotope compositions indicates that marine OC (δ13C ~-20.4‰ to -18.6‰) dominates the lost OC within the Yap Trench and does not differ from that of the abyssal zone. In contrast, terrestrial OC with δ13C values of approximately -27.4‰ to -20.5‰ was the major source of remineralized OC in the sublittoral zone. The ratios of OC loadings in the bottom layer relative to those in the top layers of sediment cores indicate that the preservation capacities of hadal trenches are much lower than those of other environments, and only approximately 30% of the SOC deposited in hadal trenches is finally buried. The value is equivalent to 0.066% of the primary production-derived OC and much lower than the global ocean average (~0.3%). Overall, the hadal zone exhibits the lowest OC loading and preservation capacity of SOC of the different marine environments investigated, despite the occurrence of a notable funneling effect.
Key words:    Yap Trench|hadal zone|organic carbon loading|specific surface area|preservation capacity   
Received: 2018-12-18   Revised: 2019-04-25
Tools
PDF (2612 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by LI Dong
Articles by ZHAO Jun
Articles by LIU Chenggang
Articles by SUN Chengjun
Articles by CHEN Jianfang
Articles by PAN Jianming
Articles by HAN Zhengbing
Articles by HU Ji
References:
Alin S R, Aalto R, Goni M A, Richey J E, Dietrich W E. 2008.Biogeochemical characterization of carbon sources in the Strickland and Fly rivers, Papua New Guinea. Journal of Geophysical Research:Earth Surface, 113:F01S05, https://doi.org/10.1029/2006JF000625.
Aller R C. 1998. Mobile deltaic and continental shelf muds as suboxic, fluidized bed reactors. Marine Chemistry, 61(3-4):143-155.
Aller R C, Blair N E. 2004. Early diagenetic remineralization of sedimentary organic C in the Gulf of Papua deltaic complex (Papua New Guinea):net loss of terrestrial C and diagenetic fractionation of C isotopes. Geochimica et Cosmochimica Acta, 68(8):1 815-1 825.
Aller R C, Blair N E. 2006. Carbon remineralization in the Amazon-Guianas tropical mobile mudbelt:a sedimentary incinerator. Continental Shelf Research, 26(17-18):2 241-2 259.
Aller R C, Blair N E, Brunskill G J. 2008. Early diagenetic cycling, incineration, and burial of sedimentary organic carbon in the central Gulf of Papua (Papua New Guinea).Journal of Geophysical Research:Earth Surface, 113(F1):F01S09, https://doi.org/10.1029/2006JF000689.
Aller R C, Mackin J E, Ullman W J, Wang C H, Tsai S M, Jin J C, Sui Y N, Hong J Z. 1985. Early chemical diagenesis, sediment-water solute exchange, and storage of reactive organic matter near the mouth of the Changjiang, East China Sea. Continental Shelf Research, 4(1-2):227-251.
Aller R C, Madrid V, Chistoserdov A, Aller J Y, Heilbrun C. 2010. Unsteady diagenetic processes and sulfur biogeochemistry in tropical deltaic muds:implications for oceanic isotope cycles and the sedimentary record.Geochimica et Cosmochimica Acta, 74(16):4 671-4 692.
Amon R M W. 2016. Ocean dissolved organics matter. Nature Geoscience, 9(12):864-865.
Bao R, Strasser M, McNichol A P, Haghipour N, Mclntyre C, Wefer G, Eglinton T I. 2018. Tectonically-triggered sediment and carbon export to the hadal zone. Nature Communications, 9(1):121.
Barber A, Brandes J, Leri A, Lalonde K, Balind K, Wirick S, Wang J, Gélinas Y. 2017. Preservation of organic matter in marine sediments by inner-sphere interactions with reactive iron. Scientific Reports, 7(1):366.
Bergamaschi B A, Tsamakis E, Keil R G, Eglinton T I, Montluçon D B, Hedges J I. 1997. The effect of grain size and surface area on organic matter, lignin and carbohydrate concentration, and molecular compositions in Peru Margin sediments. Geochimica et Cosmochimica Acta, 61(6):1 247-1 260.
Blair N E, Aller R C. 2012. The fate of terrestrial organic carbon in the marine environment. Annual Review of Marine Science, 4(1):401-423.
Bröder L, Tesi T, Andersson A, Eglinton T I, Semiletov I P, Dudarev O V, Roos P, Gustafsson Ö. 2016. Historical records of organic matter supply and degradation status in the East Siberian Sea. Organic Geochemistry, 91:16-30.
Chen J F, Jin H Y, Li H L, Zhang H S, Ji Z Q, Zhuang Y P, Bai Y C. 2015. Carbon sink mechanism and processes in the Arctic Ocean under arctic rapid change. Chinese Science Bulletin, 60(35):3 406-3 416.
Chen J F, Zhang H S, Jin H Y, Jin M M, Liu Z L. 2004.Accumulation of sedimentary organic carbon in the arctic shelves and its significance on global carbon budget. Chinese Journal of Polar Research, 16(3):193-201. (in Chinese with English abstract)
Clift P, Vannucchi P. 2004. Controls on tectonic accretion versus erosion in subduction zones:Implications for the origin and recycling of the continental crust. Reviews of Geophysics, 42(2):RG2001, https://doi.org/10.1029/2003RG000127.
Conte M H, Ralph N, Ross E H. 2001. Seasonal and interannual variability in deep ocean particle fluxes at the Oceanic Flux Program (OFP)/Bermuda Atlantic Time Series(BATS) site in the western Sargasso Sea near Bermuda.Deep Sea Research Part II:Topical Studies in Oceanography, 48(8-9):1 471-1 505.
Danovaro R, Croce N D, Dell'Anno A, Pusceddu A. 2003. A depocenter of organic matter at 7800 m depth in the SE Pacific Ocean. Deep Sea Research Part I:Oceanographic Research Papers, 50(12):1 411-1 420.
Dixit S, van Cappellen P, van Bennekom A J. 2001. Processes controlling solubility of biogenic silica and pore water build-up of silicic acid in marine sediments. Marine Chemistry, 73(3-4):333-352.
Falkowski P G, Barber R T, Smetacek V. 1998. Biogeochemical controls and feedbacks on ocean primary production.Science, 281(5374):200-206.
Francisquini M I, Lima C M, Pessenda L C R, Rossetti D F, França M C, Cohen M C L. 2014. Relation between carbon isotopes of plants and soils on Marajó Island, a large tropical island:implications for interpretation of modern and past vegetation dynamics in the Amazon region. Palaeogeography, Palaeoclimatology, Palaeoecology, 415:91-104.
Fujio S, Yanagimoto D, Taira K. 2000. Deep current structure above the Izu-Ogasawara Trench. Journal of Geophysical Research:Oceans, 105(C3):6 377-6 386.
Fujiwara T, Tamura C, Nishizawa A, Fujioka K, Kobayashi K, Iwabuchi Y. 2000. Morphology and tectonics of the Yap Trench. Marine Geophysical Researches, 21(1-2):69-86.
Glud R N, Wenzhöfer F, Middelboe M, Oguri K, Turnewitsch R, Canfield D E, Kitazato H. 2013. High rates of microbial carbon turnover in sediments in the deepest oceanic trench on Earth. Nature Geoscience, 6(4):284-288.
Goñi M A, O'Connor A E, Kuzyk Z Z, Yunker M B, Gobeil C, Macdonald R W. 2013. Distribution and sources of organic matter in surface marine sediments across the North American Arctic margin. Journal of Geophysical Research:Oceans, 118(9):4 017-4 035.
Hallock Z R, Teague W J. 1996. Evidence for a North Pacific deep western boundary current. Journal of Geophysical Research:Oceans, 101(C3):6 617-6 624.
Hartnett H E, Keil R G, Hedges J I, Devol A H. 1998. Influence of oxygen exposure time on organic carbon preservation in continental margin sediments. Nature, 391(6667):572-575.
Henrichs S M, Reeburgh W S. 1987. Anaerobic mineralization of marine sediment organic matter:rates and the role of anaerobic processes in the oceanic carbon economy.Geomicrobiology Journal, 5(3-4):191-237.
Honjo S, Manganini S J, Krishfield R A, Francois R. 2008.Particulate organic carbon fluxes to the ocean interior and factors controlling the biological pump:a synthesis of global sediment trap programs since 1983. Progress in Oceanography, 76(3):217-285.
Hung C C, Tseng C W, Gong G C, Chen K S, Chen M H, Hsu S C. 2013. Fluxes of particulate organic carbon in the East China Sea in summer. Biogeosciences, 10(10):6 469-6 484.
Ichino M C, Clark M R, Drazen J C, Jamieson A, Jones D O B, Martin A P, Rowden A A, Shank T M, Yancey P H, Ruhl H A. 2015. The distribution of benthic biomass in hadal trenches:a modelling approach to investigate the effect of vertical and lateral organic matter transport to the seafloor.Deep Sea Research Part I:Oceanographic Research Papers, 100:21-33.
Jamieson A. 2015. The Hadal Zone:Life in the Deepest Oceans. England:Cambridge University Press.Jamieson A J, Fujii T. 2011. Trench connection. Biology Letters, 7(5):641-643.
Keil R G, Mayer L M, Quay P D, Richey J E, Hedges J I. 1997b. Loss of organic matter from riverine particles in deltas. Geochimica et Cosmochimica Acta, 61(7):1 507-1 511.
Keil R G, Tsamakis E, Fuh C B, Giddings J C, Hedges J I. 1994. Mineralogical and textural controls on the organic composition of coastal marine sediments:hydrodynamic separation using SPLITT-fractionation. Geochimica et Cosmochimica Acta, 58(2):879-893.
Keil R G, Tsamakis E, Wolf N, Hedges J I, Goñi M. 1997a. 33.Relationships between organic carbon preservation and mineral surface area in Amazon fan sediments (Holes 932A and 942A). In:Flood R D, Piper D J W, Klaus A, Peterson L C eds. Proceedings of the Ocean Drilling Program, Scientific Results, 155:531-538.
Lalonde K, Mucci A, Ouellet A, Gélinas Y. 2012. Preservation of organic matter in sediments promoted by iron. Nature, 483(7388):198-200.
Lasaga A C, Berner R A, Garrels R M. 1985. An improved geochemical model of atmospheric CO2 fluctuations over the past 100 million years. In:The Carbon Cycle and Atmospheric CO2:Natural Variations Archean to Present, Volume 32. American Geophysical Union, 397-411, https://doi.org/10.1029/GM032p0397.
Li D, Yao P, Bianchi T S, Zhang T T, Zhao B, Pan H H, Wang J P, Yu Z G. 2014. Organic carbon cycling in sediments of the Changjiang Estuary and adjacent shelf:implication for the influence of Three Gorges Dam. Journal of Marine Systems, 139:409-419.
Li D, Zhao J, Liu C G, Sun C J, Chen J F, Pan J M, Yang Z, Wang K, Han Z B, Yu P S. 2018. Advances of living environment characteristics and biogeochemical processes in the hadal zone. Earth Science, (S2):162-178.(in Chinese with English abstract)
Li X X, Bianchi T S, Allison M A, Chapman P, Mitra S, Zhang Z R, Yang G P, Yu Z G. 2012. Composition, abundance and age of total organic carbon in surface sediments from the inner shelf of the East China Sea. Marine Chemistry, 145-147:37-52.
Li Z Q, Wang X Y, Jin H Y, Ji Z Q, Bai Y C, Chen J F. 2017.Variations in organic carbon loading of surface sediments from the shelf to the slope of the Chukchi Sea, Arctic Ocean. Acta Oceanologica Sinica, 36(8):131-136.
Longhurst A, Sathyendranath S, Platt T, Caverhill C. 1995. An estimate of global primary production in the ocean from satellite radiometer data. Journal of Plankton Research, 17(6):1 245-1 271.
Loucaides S, Behrends T, van Cappellen P. 2010. Reactivity of biogenic silica:surface versus bulk charge density.Geochimica et Cosmochimica Acta, 74(2):517-530.
Loucaides S, van Cappellen P, Roubeix V, Moriceau B, Ragueneau O. 2012. Controls on the recycling and preservation of biogenic silica from biomineralization to burial. Silicon, 4(1):7-22.
Luo M, Gieskes J, Chen L Y, Shi X F, Chen D F. 2017.Provenances, distribution, and accumulation of organic matter in the southern Mariana Trench rim and slope:implication for carbon cycle and burial in hadal trenches.Marine Geology, 386:98-106.
Lutz M J, Caldeira K, Dunbar R B, Behrenfeld M J. 2007.Seasonal rhythms of net primary production and particulate organic carbon flux to depth describe the efficiency of biological pump in the global ocean. Journal of Geophysical Research:Oceans, 112(C10):C10011, https://doi.org/10.1029/2006JC003706.
Mayer L M. 1994a. Relationships between mineral surfaces and organic carbon concentrations in soils and sediments.Chemical Geology, 114(3-4):347-363.
Mayer L M. 1994b. Surface area control of organic carbon accumulation in continental shelf sediments. Geochimica et Cosmochimica Acta, 58(4):1 271-1 284.
Mayer L M. 1995. Sedimentary organic matter preservation:an assessment and speculative synthesis-a comment.Marine Chemistry, 49(2-3):123-126.
Müller P J, Suess E. 1980. Productivity, sedimentation rate, and sedimentary organic matter in the oceans-I. organic carbon preservation. Deep Sea Research Part A.Oceanographic Research Papers, 26(12):1 347-1 362.
Nakatsuka T, Handa N, Harada N, Sugimoto T, Lmaizumi S. 1997. Origin and decomposition of sinking particulate organic matter in the deep water column inferred from the vertical distributions of its δ15N, δ13C and δ14C. Deep Sea Research Part I:Oceanographic Research Papers, 44(12):1 957-1 979.
Nakatsuka T, Hosokawa A, Handa N, Matsumoto E, Masuzawa T. 2000. 14C budget of sinking particulate organic matter in the Japan Trench:a new approach to estimate the contribution from resuspended particles in deep water column. In:Handa N, Tanoue E, Hama T eds. Dynamics and Characterization of Marine Organic Matter. Ocean Sciences Research. Dordrecht:Springer, 2:169-186.
Nath B N, Khadge N H, Nabar S, Kumar C R, Ingole B S, Valsangkar A B, Sharma R, Srinivas K. 2012. Monitoring the sedimentary carbon in an artificially disturbed deepsea sedimentary environment. Environmental Monitoring and Assessment, 184(5):2 829-2 844.
Nielsen M E, Fisk M R. 2008. Data report:specific surface area and physical properties of subsurface basalt samples from the east flank Juan de Fuca Ridge. In:Proceedings of the Integrated Ocean Drilling Program, Volume 301.
Nielsen M E, Fisk M R. 2010. Surface area measurements of marine basalts:implications for the subseafloor microbial biomass. Geophysical Research Letters, 37(15):L15604, https://doi.org/10.1029/2010GL044074.
Nozaki Y, Ohta Y. 1993. Rapid and frequent turbidite accumulation in the bottom of Izu-Ogasawara Trench:chemical and radiochemical evidence. Earth and Planetary Science Letters, 120(3-4):345-360.
Nunoura T, Takaki Y, Hirai M, Shimamura S, Makabe A, Koide O, Kikuchi T, Miyazaki J, Koba K, Yoshida N, Sunamura M, Takai K. 2015. Hadal biosphere:insight into the microbial ecosystem in the deepest ocean on Earth. Proceedings of the National Academy of Sciences of the United States of America, 112(11):E1 230-E1 236.
Oguri K, Kawamura K, Sakaguchi A, Toyofuku T, Kasaya T, Murayama M, Fujikura K, Glud R N, Kitazato H. 2013.Hadal disturbance in the Japan Trench induced by the 2011 Tohoku-Oki Earthquake. Scientific Reports, 3:1 915.
Peterson M L, Wakeham S G, Lee C, Askea M A, Miquel J C. 2005. Novel techniques for collection of sinking particles in the ocean and determining their settling rates.Limnology and Oceanography:Methods, 3(12):520-532.
Smith W O Jr, Demaster D J. 1996. Phytoplankton biomass and productivity in the Amazon River plume:correlation with seasonal river discharge. Continental Shelf Research, 16(3):291-319.
Taira K, Kitagawa S, Yamashiro T, Yanagimoto D. 2004. Deep and bottom currents in the challenger deep, mariana trench, measured with super-deep current meters. Journal of Oceanography, 60(6):919-926.
Tao J, Ma W W, Li W J, Li T, Zhu M X. 2017. Organic carbon preservation by reactive iron oxides in South Yellow Sea sediments. Haiyang Xuebao, 39(8):16-24. (in Chinese with English abstract)
Tesi T, Semiletov I, Dudarev O, Andersson A, Gustafsson Ö. 2016. Matrix association effects on hydrodynamic sorting and degradation of terrestrial organic matter during crossshelf transport in the Laptev and East Siberian shelf seas.Journal of Geophysical Research:Biogeosciences, 121(6):731-752.
Vonk J E, Giosan L, Blusztajn J, Montlucon D, Graf Pannatier E, McIntyre C, Wacker L, Macdonald R W, Yunker M B, Eglinton T I. 2015. Spatial variations in geochemical characteristics of the modern Mackenzie Delta sedimentary system. Geochimica et Cosmochimica Acta, 171:100-120.
Vonk J E, Sánchez-García L, van Dongen B E, Alling V, Kosmach D, Charkin A, Semiletov I P, Dudarev O V, Shakhova N, Roos P, Eglinton T I, Andersson A, Gustafsson Ö. 2012. Activation of old carbon by erosion of coastal and subsea permafrost in Arctic Siberia. Nature, 489(7414):137-140.
Wang Y Y, Wang H, He J S, Feng X J. 2017. Iron-mediated soil carbon response to water-table decline in an alpine wetland. Nature Communications, 8:15 972.
Wu B, Li D, Zhao J, Liu C G, Sun C J, Chen J F, Pan J M, Han Z B, Hu J. 2018a. Influence of sedimentary environment on composition and distribution of sediments in the Yap Trench. Haiyang Xuebao, 40(10):167-179. (in Chinese with English abstract)
Wu B, Li D, Zhao J, Liu C G, Sun C J, Chen J F, Pan J M, Han Z B, Hu J. 2018b. Vertical distribution of sedimentary organic carbon in the yap trench and its implications.China Environmental Science, 38(9):3 502-3 511. (in Chinese with English abstract)
Yao P, Yu Z G, Bianchi T S, Guo Z G, Zhao M X, Knappy C S, Keely B J, Zhao B, Zhang T T, Pan H H, Wang J P, Li D. 2015. A multiproxy analysis of sedimentary organic carbon in the Changjiang Estuary and adjacent shelf.Journal of Geophysical Research:Biogeosciences, 120:1 407-1 429.
Yao P, Zhao B, Bianchi T S, Guo Z G, Zhao M X, Li D, Pan H H, Wang J P, Zhang T T, Yu Z G. 2014. Remineralization of sedimentary organic carbon in mud deposits of the Changjiang Estuary and adjacent shelf:implications for carbon preservation and authigenic mineral formation.Continental Shelf Research, 91:1-11.
Yue X A, Yan Y X, Ding H B, Sun C J, Yang G P. 2018.Biological geochemical characteristics of the sediments in the yap trench and its oceanographic significance.Periodical of Ocean University of China, 48(3):88-96. (in Chinese with English abstract)
Zhang H S, Yu P S, Ni J Y, Wu G H, Sun W P, Lu B. 2008.Geochemical contrast of the physical properties, the source characters and the depositional environment of the organic matter from the different strata of the equatorial Pacific area. Acta Oceanologica Sinica, 30(6):60-68. (in Chinese with English abstract)
Zhao B, Yao P, Yu Z G. 2016. The effect of organic carbon-iron oxide association on the preservation of sedimentary organic carbon in marine environments. Advances in Earth Science, 31(11):1 151-1 158. (in Chinese with English abstract)
Zhu M X, Shi X N, Yang G P, Li T, Lv R Y. 2011. Relative contributions of various early diagenetic pathways to mineralization of organic matter in marine sediments:an overview. Advances in Earth Science, 26(4):355-364. (in Chinese with English abstract)
Zonneveld K A F, Versteegh G J M, Kasten S, Eglinton T I, Emeis K C, Koch B P, de Lange G J, de Leeuw J W, Middelburg J J, Mollenhauer G, Prahl F G, Rethemeyer J, Wakeham S G. 2010. Selective preservation of organic matter in marine environments; processes and impact on the sedimentary record. Biogeosciences, 7(2):483-511.