Cite this paper:
WANG Ting, WANG Youji. Behavioral responses to ocean acidification in marine invertebrates: new insights and future directions[J]. HaiyangYuHuZhao, 2020, 38(3): 759-772

Behavioral responses to ocean acidification in marine invertebrates: new insights and future directions

WANG Ting1,2,3, WANG Youji1,2,3
1 National Demonstration Center for Experimental Fisheries Science Education(Shanghai Ocean University), Shanghai 201306, China;
2 International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China;
3 Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources(Shanghai Ocean University), Ministry of Education, Shanghai 201306, China
Abstract:
Ocean acidification (OA) affects marine biodiversity and alters the structure and function of marine populations, communities, and ecosystems. Recently, effects of OA on the behavioral responses of marine animals have been given with much attention. While many of previous studies focuses on marine fish. Evidence suggests that marine invertebrate behaviors were also be affected. In this review, we discussed the effects of CO2-driven OA on the most common behaviors studied in marine invertebrates, including settlement and habitat selection, feeding, anti-predatory, and swimming behaviors, and explored the related mechanisms behind behaviors. This review summarizes how OA affects marine invertebrate behavior, and provides new insights and highlights novel areas for future research.
Key words:    carbon dioxide|global climate change|invertebrate behavior|ocean acidification (OA)|pH   
Received: 2019-04-24   Revised: 2019-06-17
Tools
PDF (259 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by WANG Ting
Articles by WANG Youji
References:
Albright R, Langdon C. 2011. Ocean acidification impacts multiple early life history processes of the Caribbean coral Porites astreoides. Global Change Biol., 17(7):2 478-2 487,https://doi.org/10.1111/j.1365-2486.2011.02404.x.
Albright R, Mason B, Langdon C J. 2008. Effect of aragonite saturation state on settlement and post-settlement growth of Porites astreoides larvae. Coral Reefs, 27(3):485-490,https://doi.org/10.1007/s00338-008-0392-5.
Albright R, Mason B, Miller M, Langdon C. 2010. Ocean acidification compromises recruitment success of the threatened Caribbean coral Acropora palmata. Proc. Natl. Acad. Sci. USA, 107(47):20 400-20 404,https://doi.org/10.1073/pnas.1007273107.
Alenius B, Munguia P. 2012. Effects of pH variability on the intertidal isopod, Paradella dianae. Mar. Freshw. Behav.Physiol., 45(4):245-259,https://doi.org/10.1080/10236244.2012.727235.
Amaral V, Cabral H N, Bishop M J. 2012. Effects of estuarine acidification on predator-prey interactions. Mar. Ecol. Prog.Ser., 445:117-127,https://doi.org/10.3354/meps09487.
Anlauf H, D'Croz L, O'Dea A. 2011. A corrosive concoction:the combined effects of ocean warming and acidification on the early growth of a stony coral are multiplicative. J.Exp. Mar. Biol. Ecol., 397(1):13-20,https://doi.org/10.1016/j.jembe.2010.11.009.
Appelhans Y S, Thomsen J, Opitz S, Pansch C, Melzner F, Wahl M. 2014. Juvenile sea stars exposed to acidification decrease feeding and growth with no acclimation potential. Mar. Ecol. Prog. Ser., 509:227-239,https://doi.org/10.3354/meps10884.
Appelhans Y S, Thomsen J, Pansch C, Melzner F, Wahl M. 2012. Sour times:seawater acidification effects on growth, feeding behaviour and acid-base status of Asterias rubens and Carcinus maenas. Mar. Ecol. Prog. Ser., 459:85-98,https://doi.org/10.3354/meps09697.
Ashur M M, Johnston N K, Dixson D L. 2017. Impacts of ocean acidification on sensory function in marine organisms. Integr. Comp. Biol., 57(1):63-80,https://doi.org/10.1093/icb/icx010.
Barry J P, Lovera C, Buck K R, Peltzer E T, Taylor J R, Walz P, Whaling P J, Brewer P G. 2014. Use of a free ocean CO2 enrichment (FOCE) system to evaluate the effects of ocean acidification on the foraging behavior of a deep-sea urchin. Environ. Sci. Technol., 48(16):9 890-9 897,https://doi.org/10.1021/es501603r.
Benítez S, Duarte C, López J, Manríquez P H, Navarro J M, Bonta C C, Torres R, Quijón P A. 2016. Ontogenetic variability in the feeding behavior of a marine amphipod in response to ocean acidification. Mar. Pollut. Bull., 112(1-2):375-379,https://doi.org/10.1016/j.marpolbul.2016.07.016.
Benítez S, Lagos N A, Osores S, Opitz T, Duarte C, Navarro J M, Lardies M A. 2018. High pCO2 levels affect metabolic rate, but not feeding behavior and fitness, of farmed giant mussel Choromytilus chorus. Aquac. Environ. Interact., 10:267-278,https://doi.org/10.3354/aei00271.
Bergan A J, Lawson G L, Maas A E, Wang Z A. 2017. The effect of elevated carbon dioxide on the sinking and swimming of the shelled pteropod Limacina retroversa.ICES J. Mar. Sci., 74(7):1 893-1 905,https://doi.org/10.1093/icesjms/fsx008.
Bibby R, Cleall-Harding P, Rundle S, Widdicombe S, Spicer J. 2007. Ocean acidification disrupts induced defences in the intertidal gastropod Littorina littorea. Biol. Lett., 3(6):699-701,https://doi.org/10.1098/rsbl.2007.0457.
Boron W F. 1987. Intracellular pH regulation. In:Andreoli T E, Hoffman J F, Fanestil D D, Schultz S G eds. Membrane Transport Processes in Organized Systems. Springer, Boston, MA. p.39-51,https://doi.org/10.1007/978-1-4684-5404-8_3.
Brennand H S, Soars N, Dworjanyn S A, Davis A R, Byrne M. 2010. Impact of ocean warming and ocean acidification on larval development and calcification in the sea urchin Tripneustes gratilla. PLoS One, 5(6):e11372,https://doi.org/10.1371/journal.pone.0011372.
Briffa M, De La Haye K, Munday P L. 2012. High CO2 and marine animal behaviour:potential mechanisms and ecological consequences. Mar. Pollut. Bull., 64(8):1 519-1 528,https://doi.org/10.1016/j.marpolbul.2012.05.032.
Burnell O W, Russell B D, Irving A D, Connell S D. 2013.Eutrophication offsets increased sea urchin grazing on seagrass caused by ocean warming and acidification. Mar.Ecol. Prog. Ser., 485:37-46,https://doi.org/10.3354/meps10323.
Caley M J, Carr M H, Hixon M A, Hughes T P, Jones G P, Menge B A. 1996. Recruitment and the local dynamics of open marine populations. Annu. Rev. Ecol. Syst., 27:477-500,https://doi.org/10.1146/annurev.ecolsys.27.1.477.
Carroll M A, Catapane E J, Molecular. 2007. The nervous system control of lateral ciliary activity of the gill of the bivalve mollusc, Crassostrea virginica. Comp. Biochem.Physiol. A:Mol. Integr. Physiol., 148(2):445-450,https://doi.org/10.1016/j.cbpa.2007.06.003.
Catapane E J, Nelson M, Adams T, Carroll M A. 2016.Innervation of gill lateral cells in the bivalve mollusc Crassostrea virginica affects cellular membrane potential and cilia activity. J. Pharmacol. Rep., 1(2):109.
Catapane E J, Stefano G B, Aiello E. 1978. Pharmacological study of the reciprocal dual innervation of the lateral ciliated gill epithelium by the CNS of Mytilus edulis(Bivalvia). J. Exp. Biol., 74(1):101-113..
Catapane E J, Stefano G B, Aiello E. 1979. Neurophysiological correlates of the dopaminergic cilio-inhibitory mechanism of Mytilus edulis. J. Exp. Biol., 83:315-323.
Chan K Y K, García E, Dupont S. 2015. Acidification reduced growth rate but not swimming speed of larval sea urchins.Sci. Rep., 5:9 764,https://doi.org/10.1038/srep09764.
Chan K Y K, Grünbaum D, Arnberg M, Dupont S. 2016.Impacts of ocean acidification on survival, growth, and swimming behaviours differ between larval urchins and brittlestars. ICES J. Mar. Sci., 73(3):951-961,https://doi.org/10.1093/icesjms/fsv073.
Chan K Y K, Grünbaum D, O'Donnell M J. 2011. Effects of ocean-acidification-induced morphological changes on larval swimming and feeding. J. Exp. Biol., 214(22):3 857-3 867,https://doi.org/10.1242/jeb.054809.
Charpentier C L, Cohen J H. 2016. Acidification and γ-aminobutyric acid independently alter kairomone-induced behaviour. R. Soc. Open Sci., 3(9):160 311,https://doi.org/10.1098/rsos.160311.
Chivers D P, McCormick M I, Nilsson G E, Munday P L, Watson S A, Meekan M G, Mitchell M D, Corkill K C, Ferrari M C O. 2014. Impaired learning of predators and lower prey survival under elevated CO2:a consequence of neurotransmitter interference. Global Change Biol., 20(2):515-522,https://doi.org/10.1111/gcb.12291.
Christmas A M F. 2013. Effects of Ocean Acidification on Dispersal Behavior in the Larval Stage of the Dungeness Crab and the Pacific Green Shore Crab. Western Washington University, Bellingham.
Chung W S, Marshall N J, Watson S A, Munday P L, Nilsson G E. 2014. Ocean acidification slows retinal function in a damselfish through interference with GABAA receptors. J.Exp. Biol., 217(3):323-326,https://doi.org/10.1242/jeb.092478.
Cigliano M, Gambi M C, Rodolfo-Metalpa R, Patti F P, HallSpencer J M. 2010. Effects of ocean acidification on invertebrate settlement at volcanic CO2 vents. Mar. Biol., 157(11):2 489-2 502,https://doi.org/10.1007/s00227-010-1513-6.
Clements J C, Bishop M M, Hunt H L. 2017. Elevated temperature has adverse effects on GABA-mediated avoidance behaviour to sediment acidification in a wideranging marine bivalve. Mar. Biol., 164(3):56,https://doi.org/10.1007/s00227-017-3085-1.
Clements J C, Hunt H L. 2014. Influence of sediment acidification and water flow on sediment acceptance and dispersal of juvenile soft-shell clams (Mya arenaria L.). J.Exp. Mar. Biol. Ecol., 453:62-69,https://doi.org/10.1016/j.jembe.2014.01.002.
Clements J C, Hunt H L. 2015. Marine animal behaviour in a high CO2 ocean. Mar. Ecol. Prog. Ser., 536:259-279,https://doi.org/10.3354/meps11426.
Clements J C, Hunt H L. 2017. Effects of CO2-driven sediment acidification on infaunal marine bivalves:a synthesis.Mar. Pollut. Bull., 117(1-2):6-16,https://doi.org/10.1016/j.marpolbul.2017.01.053.
De La Haye K L, Spicer J I, Widdicombe S, Briffa M. 2011.Reduced sea water pH disrupts resource assessment and decision making in the hermit crab Pagurus bernhardus.Anim. Behav., 82(3):495-501,https://doi.org/10.1016/j.anbehav.2011.05.030.
De La Haye K L, Spicer J I, Widdicombe S, Briffa M. 2012.Reduced pH sea water disrupts chemo-responsive behaviour in an intertidal crustacean. J. Exp. Mar. Biol.Ecol., 412:134-140,https://doi.org/10.1016/j.jembe.2011.11.013.
Devine B M, Munday P L, Jones G P. 2012. Rising CO2 concentrations affect settlement behaviour of larval damselfishes. Coral Reefs, 31(1):229-238,https://doi.org/10.1007/s00338-011-0837-0.
Dissanayake A, Ishimatsu A. 2011. Synergistic effects of elevated CO2 and temperature on the metabolic scope and activity in a shallow-water coastal decapod (Metapenaeus joyneri; Crustacea:Penaeidae). ICES J. Mar. Sci., 68(6):1 147-1 154,https://doi.org/10.1093/icesjms/fsq188.
Domenici P, Torres R, Manriquez P H. 2017. Effects of elevated carbon dioxide and temperature on locomotion and the repeatability of lateralization in a keystone marine mollusc. J. Exp. Biol., 220(4):667-676,https://doi.org/10.1242/jeb.151779.
Doropoulos C, Diaz-Pulido G. 2013. High CO2 reduces the settlement of a spawning coral on three common species of crustose coralline algae. Mar. Ecol. Prog. Ser., 475:93-99,https://doi.org/10.3354/meps10096.
Doropoulos C, Ward S, Diaz-Pulido G, Hoegh-Guldberg O, Mumby P J. 2012. Ocean acidification reduces coral recruitment by disrupting intimate larval-algal settlement interactions. Ecol. Lett., 15(4):338-346,https://doi.org/10.1111/j.1461-0248.2012.01743.x.
Duarte C, López J, Benítez S, Manríquez P H, Navarro J M, Bonta C C, Torres R, Quijón P. 2016. Ocean acidification induces changes in algal palatability and herbivore feeding behavior and performance. Oecologia, 180(2):453-462,https://doi.org/10.1007/s00442-015-3459-3.
Dupont S T, Mercurio M, Giacoletti A, Rinaldi A, Mirto S, D'Acquisto L, Sabatino M A, Sara G. 2015. Functional consequences of prey acclimation to ocean acidification for the prey and its predator. PeerJ PrePr., 3:e1438v1.
Dupont S, Havenhand J, Thorndyke W, Peck L S, Thorndyke M. 2008. Near-future level of CO2-driven ocean acidification radically affects larval survival and development in the brittlestar Ophiothrix fragilis. Mar.Ecol. Prog. Ser., 373:285-294.
Eads A R, Kennington W J, Evans J P. 2016. Interactive effects of ocean warming and acidification on sperm motility and fertilization in the mussel Mytilus galloprovincialis. Mar.Ecol. Prog. Ser., 562:101-111,https://doi.org/10.3354/meps11944.
Elgeti J, Winkler R G, Gompper G. 2015. Physics of microswimmers-single particle motion and collective behavior:a review. Rep. Prog. Phys., 78(5):056601,https://doi.org/10.1088/0034-4885/78/5/056601.
Ellis R P, Bersey J, Rundle S D, Hall-Spencer J M, Spicer J I. 2009. Subtle but significant effects of CO2 acidified seawater on embryos of the intertidal snail, Littorina obtusata. Aquat. Biol., 5(1):41-48,https://doi.org/10.3354/ab00118.
Fabry V J, Seibel B A, Feely R A, Orr J C. 2008. Impacts of ocean acidification on marine fauna and ecosystem processes. ICES J. Mar. Sci., 65(3):414-432,https://doi.org/10.1093/icesjms/fsn048.
Ferrari M C O, McCormick M I, Munday P L, Meekan M G, Dixson D L, Lönnstedt O, Chivers D P. 2012. Effects of ocean acidification on visual risk assessment in coral reef fishes. Funct Ecol, 26(3):553-558,https://doi.org/10.1111/j.1365-2435.2011.01951.x.
García E, Clemente S, Carlos Hernández J. 2018. Effects of natural current pH variability on the sea urchin Paracentrotus lividus larvae development and settlement.Mar. Environ. Res., 139:11-18,https://doi.org/10.1016/j.marenvres.2018.04.012.
Glaspie C N, Longmire K, Seitz R D. 2017. Acidification alters predator-prey interactions of blue crab Callinectes sapidus and soft-shell clam Mya arenaria. J. Exp. Mar. Biol.Ecol., 489:58-65,https://doi.org/10.1016/j.jembe.2016.11.010.
González-Gurriarán E, Freire J, Bernárdez C. 2002. Migratory patterns of female spider crabs Maja squinado detected using electronic tags and telemetry. J. Crustacean Biol., 22(1):91-97,https://doi.org/10.1163/20021975-99990212.
Gosselin L A, Qian P Y. 1997. Juvenile mortality in benthic marine invertebrates. Mar. Ecol. Prog. Ser., 146:265-282,https://doi.org/10.3354/meps146265.
Gray M W, Langdon C J, Waldbusser G G, Hales B, Kramer S. 2017. Mechanistic understanding of ocean acidification impacts on larval feeding physiology and energy budgets of the mussel Mytilus californianus. Mar. Ecol. Prog.Ser., 563:81-94,https://doi.org/10.3354/meps11977.
Green M A, Waldbusser G G, Hubazc L, Cathcart E, Hall J. 2013. Carbonate mineral saturation state as the recruitment cue for settling bivalves in marine muds. Estuar. Coasts, 36(1):18-27,https://doi.org/10.1007/s12237-012-9549-0.
Green M A, Waldbusser G G, Reilly S L, Emerson K, O'Donnell S. 2009. Death by dissolution:sediment saturation state as a mortality factor for juvenile bivalves.Limnol. Oceanogr., 54(4):1 037-1 047,https://doi.org/10.4319/lo.2009.54.4.1037.
Hamilton T J, Holcombe A, Tresguerres M. 2013. CO2-induced ocean acidification increases anxiety in rockfish via alteration of GABAA receptor functioning. Proc. Biol.Sci., 281(1775):20132509,https://doi.org/10.1098/rspb.2013.2509.
Havenhand J N, Buttler F R, Thorndyke M C, Williamson J E. 2008. Near-future levels of ocean acidification reduce fertilization success in a sea urchin. Curr. Biol., 18(15):R651-R652,https://doi.org/10.1016/j.cub.2008.06.015.
Havenhand J N, Schlegel P. 2009. Near-future levels of ocean acidification do not affect sperm motility and fertilization kinetics in the oyster Crassostrea gigas. Biogeosciences, 6(12):3 009-3 015,https://doi.org/10.5194/bg-6-3009-2009.
Heuer R M, Grosell M. 2014. Physiological impacts of elevated carbon dioxide and ocean acidification on fish.Am. J. Physiol. - Regul Integr. Comp. Physiol., 307(9):R1 061-R1 084,https://doi.org/10.1152/ajpregu.00064.2014.
Huijbers C M, Nagelkerken I, Lössbroek P A C, Schulten I E, Siegenthaler A, Holderied M W, Simpson S D. 2012. A test of the senses:fish select novel habitats by responding to multiple cues. Ecology, 93(1):46-55.
Hunt H L, Scheibling R E. 1997. Role of early post-settlement mortality in recruitment of benthic marine invertebrates.Mar. Ecol. Prog. Ser., 155:269-301,https://doi.org/10.3354/meps155269.
Igulu M M, Nagelkerken, I, Beek, M V D, Schippers, M, Eck, R.V, Mgaya, Y D. 2013. Orientation from open water to settlement habitats by coral reef fish:behavioral flexibility in the use of multiple reliable cues. Mar. Ecol. Prog. Ser., 493:243-257,https://doi.org/10.3354/meps10542
Igulu, M M, Nagelkerken, I, Fraaije, R, Hintum, R V, Ligtenberg, H, Mgaya, Y.D. 2011. The potential role of visual cues for microhabitat selection during the early life phase of a coral reef fish (Lutjanus fulviflamma). J. Exp.Mar. Biol. Ecol., 401:118-125,https://doi.org/10.1016/j.jembe.2011.01.022
Jellison B M, Ninokawa A T, Hill T M, Sanford E, Gaylord B. 2016. Ocean acidification alters the response of intertidal snails to a key sea star predator. Proc. Biol. Sci., 283(1833):20160890,https://doi.org/10.1098/rspb.2016.0890.
Jessen K R, Mirsky R, Dennison M E, Burnstock G. 1979.GABA may be a neurotransmitter in the vertebrate peripheral nervous system. Nature, 281(5726):71-74,https://doi.org/10.1038/281071a0.
Kim T W, Barry J P. 2016. Boldness in a deep sea hermit crab to simulated tactile predator attacks is unaffected by ocean acidification. Ocean Sci. J., 51(3):381-386,https://doi.org/10.1007/s12601-016-0034-8.
Kroeker K J, Kordas R L, Crim R N, Singh G G. 2010. Metaanalysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecol. Lett., 13(11):1 419-1 434,https://doi.org/10.1111/j.1461-0248.2010.01518.x.
Kroeker K J, Kordas R L, Crim R, Hendriks I E, Ramajo L, Singh G S, Duarte C M, Gattuso J P. 2013. Impacts of ocean acidification on marine organisms:quantifying sensitivities and interaction with warming. Global Change Biol., 19(6):1 884-1 896,https://doi.org/10.1111/gcb.12179.
Kroeker K J, Sanford E, Jellison B M, Gaylord B. 2014.Predicting the effects of ocean acidification on predatorprey interactions:a conceptual framework based on coastal molluscs. Biol. Bull., 226(3):211-222,https://doi.org/10.1086/BBLv226n3p211.
Lai F, Jutfelt F, Nilsson G E. 2015. Altered neurotransmitter function in CO2-exposed stickleback (Gasterosteus aculeatus):a temperate model species for ocean acidification research. Conserv. Physiol., 3(1):cov018,https://doi.org/10.1093/conphys/cov018.
Landes A, Zimmer M. 2012. Acidification and warming affect both a calcifying predator and prey, but not their interaction. Mar. Ecol. Prog. Ser., 450:1-10,https://doi.org/10.3354/meps09666.
Li L S, Lu W Q, Sui Y M, Wang Y J, Gul Y, Dupont S. 2015.Conflicting effects of predator cue and ocean acidification on the mussel Mytilus coruscus byssus production. J.ShellfishRes.,34(2):393-400,https://doi.org/10.2983/035.034.0222.
Li W, Gao K. 2012. A marine secondary producer respires and feeds more in a high CO2 ocean. Mar. Pollut. Bull., 64(4):699-703,https://doi.org/10.1016/j.marpolbul.2012.01.033
Lohmann K J, Lohmann C M F, Endres C S. 2008. The sensory ecology of ocean navigation. J. Exp. Biol., 211(11):1 719-1 728,https://doi.org/10.1242/jeb.015792.
Lunt G G. 1991. GABA and GABA receptors in invertebrates.Semin. Neurosci., 3(3):251-258,https://doi.org/10.1016/1044-5765(91)90022-G.
Maboloc E A, Chan K Y K. 2017. Resilience of the larval slipper limpet Crepidula onyx to direct and indirect-diet effects of ocean acidification. Sci. Rep., 7(1):12 062,https://doi.org/10.1038/s41598-017-12253-2.
Manríquez P H, Jara M E, Mardones M L, Navarro J M, Torres R, Lardies M A, Vargas C A, Duarte C, Widdicombe S, Salisbury J, Lagos N A. 2013. Ocean acidification disrupts prey responses to predator cues but not net prey shell growth in Concholepas concholepas (loco). PLoS One, 8(7):e68643.
Manríquez P H, Jara M E, Mardones M L, Torres R, Navarro J M, Lardies M A, Vargas C A, Duarte C, Lagos N A. 2014.Ocean acidification affects predator avoidance behaviour but not prey detection in the early ontogeny of a keystone species. Mar. Ecol. Prog. Ser., 502:157-167,https://doi.org/10.3354/meps10703.
Manríquez P H, Jara M E, Seguel M E, Torres R, Alarcon E, Lee M R. 2016. Ocean acidification and increased temperature have both positive and negative effects on early ontogenetic traits of a rocky shore keystone predator species. PLoS One, 11(3):e0151920,https://doi.org/10.1371/journal.pone.0151920.
Morse B, Rochette R. 2016. Movements and activity levels of juvenile American lobsters Homarus americanus in nature quantified using ultrasonic telemetry. Mar. Ecol.Prog. Ser., 551:155-170,https://doi.org/10.3354/meps11721.
Nagelkerken I, Munday P L. 2016. Animal Behaviour shapes the ecological effects of ocean acidification and warming:moving from individual to community-level responses.Global Change Biol., 22(3):974-989,https://doi.org/10.1111/gcb.13167.
Nakamura M, Ohki S, Suzuki A, Sakai K. 2011. Coral larvae under ocean acidification:survival, metabolism, and metamorphosis. PLoS One, 6(1):e14521,https://doi.org/10.1371/journal.pone.0014521.
Nilsson G E, Dixson D L, Domenici P, McCormick M I, Sørensen C, Watson S A, Munday P L. 2012. Near-future carbon dioxide levels alter fish behaviour by interfering with neurotransmitter function. Nat. Clim. Change, 2(3):201-204,https://doi.org/10.1038/nclimate1352.
Ohman M D, Frost B W, Cohen E B. 1983. Reverse diel vertical migration:an escape from invertebrate predators.Science, 220(4604):1 404-1 407,https://doi.org/10.1126/science.220.4604.1404.
Ou M, Hamilton T J, Eom J, Lyall E M, Gallup J, Jiang A, Lee J, Close D A, Yun S S, Brauner C J. 2015. Responses of pink salmon to CO2-induced aquatic acidification. Nat.Clim. Change, 5(10):950-955,https://doi.org/10.1038/nclimate2694.
Pecquet A, Dorey N, Chan K Y K. 2017. Ocean acidification increases larval swimming speed and has limited effects on spawning and settlement of a robust fouling bryozoan, Bugula neritina. Mar. Pollut. Bull., 124(2):903-910,https://doi.org/10.1016/j.marpolbul.2017.02.057.
Peng C, Zhao X G, Liu S X, Shi W, Han Y, Guo C, Peng X, Chai X L, Liu G X. 2017. Ocean acidification alters the burrowing behaviour, Ca2+/Mg2+-ATPase activity, metabolism, and gene expression of a bivalve species, Sinonovacula constricta. Mar. Ecol. Prog. Ser., 575:107-117,https://doi.org/10.3354/meps12224.
Persons M H, Walker S E, Rypstra A L, Marshall S D. 2001.Wolf spider predator avoidance tactics and survival in the presence of diet-associated predator cues (Araneae:Lycosidae). Anim. Behav., 61(1):43-51,https://doi.org/10.1006/anbe.2000.1594.
Pilditch C A, Valanko S, Norkko J, Norkko A. 2015. Postsettlement dispersal:the neglected link in maintenance of soft-sediment biodiversity. Biol. Lett., 11(2):20140795,https://doi.org/10.1098/rsbl.2014.0795.
Queirós A M, Fernandes J A, Faulwetter S, Nunes J, Rastrick S P S, Mieszkowska N, Artioli Y, Yool A, Calosi P, Arvanitidis C, Findlay H S, Barange M, Cheung W W L,Widdicombe S. 2015. Scaling up experimental ocean acidification and warming research:from individuals to the ecosystem. Global Change Biol., 21(1):130-143,https://doi.org/10.1111/gcb.12675.
Quinn B K, Rochette R. 2015. Potential effect of variation in water temperature on development time of American lobster larvae. ICES J. Mar. Sci., 72(S1):i79-i90,https://doi.org/10.1093/icesjms/fsv010.
Quinn B. 2014. Assessing Potential Influence of Larval Development Time and Drift on Large-scale Spatial Connectivity of American Lobster (Homarus americanus).University of New Brunswick, Fredericton and Saint John, NB.
Ren Z, Mu C, Li R, Song W, Wang C. 2018. Characterization of a γ-aminobutyrate type A receptor-associated protein gene, which is involved in the response of Portunus trituberculatus to CO2-induced ocean acidification. Aquat.Res., 49(7):2 393-2 403,https://doi.org/10.1111/are. 13699.
Rodríguez S R, Ojeda F P, Inestrosa N C. 1993. Settlement of benthic marine invertebrates. Mar. Ecol. Prog. Ser., 97:193-207,https://doi.org/10.3354/meps097193.
Roggatz C C, Lorch M, Hardege J D, Benoit D M. 2016. Ocean acidification affects marine chemical communication by changing structure and function of peptide signalling molecules. Global Change Biol., 22(12):3 914-3 926,https://doi.org/10.1111/gcb.13354.
Saba G K, Schofield O, Torres J J, Ombres E H, Steinberg D K. 2012. Increased feeding and nutrient excretion of adult Antarctic krill, Euphausia superba, exposed to enhanced carbon dioxide (CO2). PLoS One, 7(12):e52224,https://doi.org/10.1371/journal.pone.0052224.
Sanford E, Gaylord B, Hettinger A, Lenz E A, Meyer K, Hill T M. 2014. Ocean acidification increases the vulnerability of native oysters to predation by invasive snails. Proc.Biol. Sci., 281(1778):20132681,https://doi.org/10.1098/rspb.2013.2681.
Schalkhausser B, Bock C, Stemmer K, Brey T, Pörtner H O, Lannig G B. 2013. Impact of ocean acidification on escape performance of the king scallop, Pecten maximus, from Norway. Mar. Biol., 160(8):1 995-2 006,https://doi.org/10.1007/s00227-012-2057-8.
Schlegel P, Binet M T, Havenhand J N, Doyle C J, Williamson J E. 2015. Ocean acidification impacts on sperm mitochondrial membrane potential bring sperm swimming behaviour near its tipping point. J. Exp. Biol., 218(7):1 084-1 090,https://doi.org/10.1242/jeb.114900.
Schram J B, Schoenrock K M, McClintock J B, Amsler C D, Angus R A. 2017. Ocean warming and acidification alter Antarctic macroalgal biochemical composition but not amphipod grazer feeding preferences. Mar. Ecol. Prog.Ser., 581:45-56,https://doi.org/10.3354/meps12308.
Shi W, Han Y, Guo C, Zhao X G, Liu S X, Su W H, Wang Y C, Zha S J, Chai X L, Liu G X. 2017a. Ocean acidification hampers sperm-egg collisions, gamete fusion, and generation of Ca2+ oscillations of a broadcast spawning bivalve, Tegillarca granosa. Mar. Environ. Res., 130:106-112,https://doi.org/10.1016/j.marenvres.2017.07.016.
Shi W, Zhao X G, Han Y, Guo C, Liu S X, Su S H, Wang Y C, Zha S J, Chai X L, Fu W D, Yang H C, Liu G X. 2017b.Effects of reduced pH and elevated pCO2 on sperm motility and fertilisation success in blood clam, Tegillarca granosa. N. Z. J. Mar. Freshwater Res., 51(4):543-554,https://doi.org/10.1080/00288330.2017.1296006.
Sih A, Bell A, Johnson J C. 2004. Behavioral syndromes:an ecological and evolutionary overview. Trends Ecol. Evol., 19(7):372-378,https://doi.org/10.1016/j.tree.2004.04.009.
Smee D L, Weissburg M J. 2006. Hard clams (Mercenaria mercenaria) evaluate predation risk using chemical signals from predators and injured conspecifics. J. Chem.Ecol., 32(3):605-619,https://doi.org/10.1007/s10886-005-9021-8.
Spady B L, Munday P L, Watson S A. 2018. Predatory strategies and behaviours in cephalopods are altered by elevated CO2. Global Change Biol., 24(6):2 585-2 596,https://doi.org/10.1111/gcb.14098.
Spady B L, Watson S A, Chase T J, Munday P L. 2014.Projected near-future CO2 levels increase activity and alter defensive behaviours in the tropical squid Idiosepius pygmaeus. Biol. Open, 3(11):1 063-1 070,https://doi.org/10.1242/bio.20149894.
Sui Y M, Hu M H, Huang X Z, Wang Y J, Lu W Q. 2015. Antipredatory responses of the thick shell mussel Mytilus coruscus exposed to seawater acidification and hypoxia.Mar. Environ. Res., 109:159-167,https://doi.org/10.1016/j.marenvres.2015.07.008.
Sui Y M, Liu Y M, Zhao X, Dupont S, Hu M H, Wu F L, Huang X Z, Li J L, Lu W Q, Wang Y J. 2017. Defense responses to short-term hypoxia and seawater acidification in the thick shell mussel Mytilus coruscus. Front. Physiol., 8:145,https://doi.org/10.3389/fphys.2017.00145.
Sunday J M, Fabricius K E, Kroeker K J, Anderson K M, Brown N E, Barry J P, Connell S D, Dupont S, Gaylord B, Hall-Spencer J M, Klinger T, Milazzo M, Munday P L, Russell B D, Sanford E, Thiyagarajan V, Vaughan M L H, Widdicombe S, Harley C D G. 2017. Ocean acidification can mediate biodiversity shifts by changing biogenic habitat. Nat. Clim. Change, 7(1):81-85,https://doi.org/10.1038/NCLIMATE3161.
Talmage S C, Gobler C J. 2010. Effects of past, present, and future ocean carbon dioxide concentrations on the growth and survival of larval shellfish. Proc. Natl. Acad. Sci.USA, 107(40):17 246-17 251,https://doi.org/10.1073/pnas.0913804107.
Tierney A J, Atema T. 1988. Amino acid chemoreception:effects of pH on receptors and stimuli. J. Chem. Ecol., 14(1):135-141,https://doi.org/10.1007/BF01022537.
Uthicke S, Pecorino D, Albright R, Negri A P, Cantin N, Liddy M, Dworjanyn S, Kamya P, Byrne M, Lamare M. 2013.Impacts of ocean acidification on early life-history stages and settlement of the coral-eating sea star Acanthaster planci. PLoS One, 8(12):e82938,https://doi.org/10.1371/journal.pone.0082938.
Vargas C A, Aguilera V M, Martín V S, Manríquez P H,Navarro J M, Duarte C, Torres R, Lardies M A, Lagos N A. 2015. CO2-driven ocean acidification disrupts the filter feeding behavior in Chilean gastropod and bivalve species from different geographic localities. Estuar. Coasts, 38(4):1 163-1 177.
Vargas C A, De La Hoz M, Aguilera V, Martín V S, Manríquez P H, Navarro J M, Torres R, Lardies M A, Lagos N A. 2013. CO2-driven ocean acidification reduces larval feeding efficiency and changes food selectivity in the mollusk Concholepas concholepas. J. Plankton Res., 35(5):1 059-1 068,https://doi.org/10.1093/plankt/fbt045.
Vargas C A, Lagos N A, Lardies M A, Duarte C, Manríquez P H, Aguilera V M, Broitman B, Widdicombe S, Dupont S. 2017. Species-specific responses to ocean acidification should account for local adaptation and adaptive plasticity.Nat. Ecol. Evol., 1(4):84,https://doi.org/10.1038/s41559-017-0084.
Viyakarn V, Lalitpattarakit W, Chinfak N, Jandang S, Kuanui P, Khokiattiwong S, Chavanich S. 2015. Effect of lower pH on settlement and development of coral, Pocillopora damicornis (Linnaeus, 1758). Ocean Sci. J. 50(2):475-480.
Wang Y J, Hu M H, Wu F L, Storch D, Pörtner H O. 2018.Elevated pCO2 affects feeding behavior and acute physiological response of the brown crab Cancer pagurus.Front. Physiol., 9:1164.
Wang Y J, Li L S, Hu M H, Lu W Q. 2015. Physiological energetics of the thick shell mussel Mytilus coruscus exposed to seawater acidification and thermal stress. Sci.Total Environ., 514:261-272,https://doi.org/10.1016/j.scitotenv.2015.01.092.
Watson S A, Fields J B, Munday P L. 2017. Ocean acidification alters predator behaviour and reduces predation rate. Biol.Lett., 13(2):20160797,https://doi.org/10.1098/rsbl.2016.0797.
Watson S A, Lefevre S, McCormick M I, Domenici P, Nilsson G E, Munday P L. 2014. Marine mollusc predator-escape behaviour altered by near-future carbon dioxide levels.Proc. Biol. Sci., 281(1774):20132377,https://doi.org/10.1098/rspb.2013.2377.
Webster N S, Uthicke S, Botté E S, Flores F, Negri A P. 2013.Ocean acidification reduces induction of coral settlement by crustose coralline algae. Global Change Biol., 19(1):303-315,https://doi.org/10.1111/gcb.12008.
Widdicombe S, Needham H R. 2007. Impact of CO2-induced seawater acidification on the burrowing activity of Nereis virens and sediment nutrient flux. Mar. Ecol. Prog. Ser., 341:111-122,https://doi.org/10.3354/meps341111.
Widdicombe S, Spicer J I. 2008. Predicting the impact of ocean acidification on benthic biodiversity:what can animal physiology tell us? J. Exp. Mar. Biol. Ecol., 366(1-2):187-197,https://doi.org/10.1016/j.jembe.2008.07.024.
Wright J M, O'Connor W A, Parker L M, Ross P M. 2018a.Predation by the endemic whelk Tenguella marginalba(Blainville, 1832) on the invasive Pacific oyster Crassostrea gigas (Thunberg, 1793). Molluscan Res., 38(2):130-136,https://doi.org/10.1080/13235818.2017.1 420397.
Wright J M, Parker L M, O'Connor W A, Scanes E, Ross P M. 2018b. Ocean acidification affects both the predator and prey to alter interactions between the oyster Crassostrea gigas (Thunberg, 1793) and the whelk Tenguella marginalba (Blainville, 1832). Mar. Biol., 165(3):46,https://doi.org/10.1007/s00227-018-3302-6.
Wu F L, Wang T, Cui S K, Xie Z, Dupont S, Zeng J N, Gu H X, Kong H, Hu M H, Lu W Q, Wang Y J. 2017. Effects of seawater pH and temperature on foraging behavior of the Japanese stone crab Charybdis japonica. Mar. Pollut.Bull., 120(1-2):99-108,https://doi.org/10.1016/j.marpolbul.2017.04.053.
Xu X Y, Yip K R, Shin P K S, Cheung S G. 2017. Predator-prey interaction between muricid gastropods and mussels under ocean acidification. Mar. Pollut. Bull., 124(2):911-916,https://doi.org/10.1016/j.marpolbul.2017.01.003.
Xu X, Yang F, Zhao L Q, Yan X W. 2016. Seawater acidification affects the physiological energetics and spawning capacity of the Manila clam Ruditapes philippinarum during gonadal maturation. Comp. Biochem. Physiol. A:Mol.Integr. Physiol., 196:20-29,https://doi.org/10.1016/j.cbpa.2016.02.014.
Zhao X G, Guo C, Han Y, Che Z M, Wang Y C, Wang X Y, Chai X L, Wu H X, Liu G X. 2017b. Ocean acidification decreases mussel byssal attachment strength and induces molecular byssal responses. Mar. Ecol. Prog. Ser., 565:67-77,https://doi.org/10.3354/meps11992.
Zhao X G, Shi W, Han Y, Liu S X, Guo C, Fu W D, Chai X L, Liu G X. 2017a. Ocean acidification adversely influences metabolism, extracellular pH and calcification of an economically important marine bivalve, Tegillarca granosa. Mar. Environ. Res., 125:82-89,https://doi.org/10.1016/j.marenvres.2017.01.007.
Zittier Z M C, Hirse T, Pörtner H O. 2013. The synergistic effects of increasing temperature and CO2 levels on activity capacity and acid-base balance in the spider crab, Hyas araneus. Mar. Biol., 160(8):2 049-2 062,https://doi.org/10.1007/s00227-012-2073-8.