Cite this paper:
LI Hao, MENG Fanping, WANG Yuejie, LIN Yufei. Removal of phenol by Isochrysis galbana in seawater under varying temperature and light intensity[J]. HaiyangYuHuZhao, 2020, 38(3): 773-782

Removal of phenol by Isochrysis galbana in seawater under varying temperature and light intensity

LI Hao1, MENG Fanping1,2, WANG Yuejie1, LIN Yufei3
1 Key Laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao 266100, China;
2 College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China;
3 National Marine Hazard Mitigation Service, Ministry of Natural Resources of the People's Republic of China, Beijing 100194, China
Abstract:
Phenol is a common industrial chemical produced and transported worldwide largely. Therefore, accidental spillage of phenol in the ocean causes an increasing concern. Microalgae are promising to remove phenol from marine waters. However, temperature and light intensity are two main factors that markedly influence biodegradation in marine environments. In this study, a marine golden alga Isochrysis galbana is selected to research the removal of phenol under different temperatures (10-30℃) and light intensities (0-240 μmol/(m2·s)). The results show that the most suitable temperature and light intensity for phenol removal are 20℃ and 180 μmol/(m2·s), respectively, and 100 mg/L of phenol can be completely removed by microalga in 24 h at these conditions. I. galbana can also remove phenol under dark and low-temperature conditions. The removal of phenol by I. galbana at diverse temperatures and light intensities conform to first-order kinetics, and the process under dark conditions conform to zero-order kinetics. Thus, I. galbana can be used in the in-situ bioremediation of polluted seawater by phenol.
Key words:    phenol|Isochrysis galbana|temperature|light intensity|biodegradation   
Received: 2019-05-06   Revised: 2019-07-22
Tools
PDF (950 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by LI Hao
Articles by MENG Fanping
Articles by WANG Yuejie
Articles by LIN Yufei
References:
Alkhamis Y, Qin J G. 2013. Cultivation of Isochrysis galbana in phototrophic, heterotrophic, and mixotrophic conditions. BioMed. Res. Int., 2013:983 465, https://doi.org/10.1155/2013/983465.
Andersen G S, Pedersen M F, Nielsen S L. 2013. Temperature acclimation and heat tolerance of photosynthesis in Norwegian Saccharina latissima (Laminariales, Phaeophyceae). J. Phycol., 49(4):689-700.
Bradley P M, Writer J H. 2014. Effect of light on biodegradation of estrone, 17β-estradiol, and 17α-ethinylestradiol in stream sediment. J. Am. Water Resour. Assoc., 50(2):334-342.
Calabrese E J, Kenyon E M. 1991. Air Toxics and Risk Assessment. Lewis Publishers, Chelsea.Caracciolo A B, Topp E, Grenni P. 2015. Pharmaceuticals in the environment:biodegradation and effects on natural microbial communities. A review. J. Pharm. Biomed.Anal., 106:25-36.
Cunha I, Moreira S, Santos M M. 2015. Review on hazardous and noxious substances (HNS) involved in marine spill incidents-An online database. J. Hazard. Mater., 285:509-516.
Di Caprio F, Scarponi P, Altimari P, Iaquaniello G, Pagnanelli F. 2018. The influence of phenols extracted from olive mill wastewater on the heterotrophic and mixotrophic growth of Scenedesmus sp. J. Chem. Technol. Biotechnol., 93(12):3 619-3 626.
Du W, Zhao F Q, Zeng B Z. 2009. Novel multiwalled carbon nanotubes-polyaniline composite film coated platinum wire for headspace solid-phase microextraction and gas chromatographic determination of phenolic compounds.J. Chromatogr. A., 1216(18):3 751-3 757.
Duan W Y, Meng F P, Cui H W, Lin Y F, Wang G S, Wu J Y. 2018. Ecotoxicity of phenol and cresols to aquatic organisms:a review. Ecotoxicol. Environ. Saf., 157:441-456.
Duan W Y, Meng F P, Lin Y F, Wang G S. 2017. Toxicological effects of phenol on four marine microalgae. Environ.Toxicol. Pharmacol., 52:170-176.
Emerson E. 1943. The condensation of aminoantipyrine. II. A new color test for phenolic compounds. J. Org. Chem., 8(5):417-428.
French McCay D P, Whittier N, Ward M, Santos C. 2006. Spill hazard evaluation for chemicals shipped in bulk using modeling. Environ. Modell. Softw., 21(2):156-169.
Gao J, Chi J. 2015. Biodegradation of phthalate acid esters by different marine microalgal species. Mar. Pollut. Bull., 99(1-2):70-75.
Gao Q T, Wong Y S, Tam N F Y. 2011. Removal and biodegradation of nonylphenol by different Chlorella species. Mar. Pollut. Bull., 63(5-12):445-451.
Guillard R R L. 1975. Culture of phytoplankton for feeding marine invertebrates. In:Smith W L, Chanley M H eds.Culture of Marine Invertebrate Animals. Springer, Boston.p.29-60.
HELCOM. 2002. Response to Accidents at Sea Involving Spills of Hazardous Substances and Loss of Packaged Dangerous Goods. Baltic Marine Environment Protection Commission, Helsinki, Finland.
Lima S A C, Raposo M F J, Castro P M L, Morais R M. 2004.Biodegradation of p-chlorophenol by a microalgae consortium. Water Res., 38(1):97-102.
Liu M J, Fu Q, Fu H L, Shu G, Zhang W, Deng F Y, Hu J. 2014.A new kinetic approach. Stability of cefquinome sulfate under variable pH and temperature. Indian J. Pharm.Educ. Res., 48(S1):27-33.
Lu Y, Yan L H, Wang Y, Zhou S F, Fu J J, Zhang J F. 2009.Biodegradation of phenolic compounds from coking wastewater by immobilized white rot fungus Phanerochaete chrysosporium. J. Hazard. Mater., 165(1-3):1 091-1 097.
Matamoros V, Gutiérrez R, Ferrer I, García J, Bayona J M. 2015. Capability of microalgae-based wastewater treatment systems to remove emerging organic contaminants:a pilot-scale study. J. Hazard. Mater., 288:34-42.
Massalha N, Shaviv A, Sabbah I. 2010. Modeling the effect of immobilization of microorganisms on the rate of biodegradation of phenol under inhibitory conditions.Water Res., 44(18):5 252-5 259.
Nazos T T, Kokarakis E J, Ghanotakis D F. 2017. Metabolism of xenobiotics by Chlamydomonas reinhardtii:phenol degradation under conditions affecting photosynthesis.Photosynth. Res., 131(1):31-40.
Onysko K A, Budman H M, Robinson C W. 2000. Effect of temperature on the inhibition kinetics of phenol biodegradation by Pseudomonas putida Q5. Biotechnol.Bioeng., 70(3):291-299.
Perez-Garcia O, Escalante F M E, De-Bashan L E, Bashan Y. 2011. Heterotrophic cultures of microalgae:metabolism and potential products. Water Res., 45(1):11-36.
Polymenakou P N, Stephanou E G. 2005. Effect of temperature and additional carbon sources on phenol degradation by an indigenous soil Pseudomonad. Biodegradation, 16(5):403-413.
Raven J A, Geider R J. 1988. Temperature and algal growth.New Phytol., 110(4):441-461.
Saravanan P, Pakshirajan K, Saha P. 2009. Batch growth kinetics of an indigenous mixed microbial culture utilizing m-cresol as the sole carbon source. J. Hazard. Mater., 162(1):476-481.
Senthilvelan T, Kanagaraj J, Panda R C, Mandal A B. 2014.Biodegradation of phenol by mixed microbial culture:an eco-friendly approach for the pollution reduction. Clean.Technol. Environ. Policy, 16(1):113-126.
Siddiqui K S. 2015. Some like it hot, some like it cold:temperature dependent biotechnological applications and improvements in extremophilic enzymes. Biotechnol.Adv., 33(8):1 912-1 922.
Silambarasan S, Abraham J. 2013. Kinetic studies on enhancement of degradation of chlorpyrifos and its hydrolyzing metabolite TCP by a newly isolated Alcaligenes sp. JAS1. J. Taiwan Inst. Chem. Eng., 44(3):438-445.
Sinkkonen S, Paasivirta J. 2000. Degradation half-life times of PCDDs, PCDFs and PCBs for environmental fate modeling. Chemosphere, 40(9-11):943-949.
Song C F, Wei Y L, Qiu Y T, Qi Y, Li Y, Kitamura Y. 2019.Biodegradability and mechanism of florfenicol via Chlorella sp. UTEX1602 and L38:experimental study.Bioresour. Technol., 272:529-534.
Surkatti R, El-Naas M H. 2018. Competitive interference during the biodegradation of cresols. Int. J. Environ. Sci.Technol., 15(2):301-308.
Thakurta S G, Aakula M, Chakrabarty J, Dutta S. 2018.Bioremediation of phenol from synthetic and real wastewater using Leptolyngbya sp.:a comparison and assessment of lipid production. 3 Biotech, 8(4):206.
Wan S G, Li G Y, An T C, Guo B, Sun L, Zu L, Ren A L. 2010.Biodegradation of ethanethiol in aqueous medium by a new Lysinibacillus sphaericus strain RG-1 isolated from activated sludge. Biodegradation, 21(6):1 057-1 066.
Wang T, Xu Z Y, Wu L G, Li B R, Chen M X, Xue S Y, Zhu Y C, Cai J. 2017b. Enhanced photocatalytic activity for degrading phenol in seawater by TiO2-based catalysts under weak light irradiation. RSC Adv., 7(51):31 921-31 929.
Wang X Q, Wang Q L, Li S J, Li W. 2015. Degradation pathway and kinetic analysis for p-xylene removal by a novel Pandoraea sp. strain WL1 and its application in a biotrickling filter. J. Hazard. Mater., 288:17-24.
Wang Y J, Meng F P, Li H, Zhao S L, Liu Q Q, Lin Y F, Wang G S, Wu J Y. 2019. Biodegradation of phenol by Isochrysis galbana screened from eight species of marine microalgae:growth kinetic models, enzyme analysis and biodegradation pathway. J. Appl. Phycol., 31(1):445-455.
Wang Y J, Meng F P, Lin Y F, Duan W Y, Liu Q Q. 2017a. Four types of attenuation of phenol and cresols in microcosms under simulated marine conditions:a kinetic study.Chemosphere, 185:595-601.
Wernberg T, Thomsen M S, Tuya F, Kendrick G A, Staehr P A, Toohey B D. 2010. Decreasing resilience of kelp beds along a latitudinal temperature gradient:potential implications for a warmer future. Ecol. Lett., 13(6):685-694.
Wijffels R H, Kruse O, Hellingwerf K J. 2013. Potential of industrial biotechnology with cyanobacteria and eukaryotic microalgae. Curr. Opin. Biotech., 24(3):405-413.
Xiong J Q, Kurade M B, Jeon B H. 2017. Biodegradation of levofloxacin by an acclimated freshwater microalga, Chlorella vulgaris. Chem. Eng. J., 313:1 251-1 257.
Yang S, Wu R S S, Kong R Y C. 2002. Biodegradation and enzymatic responses in the marine diatom Skeletonema costatum upon exposure to 2,4-dichlorophenol. Aquat.Toxicol., 59(3-4):191-200.
Zhou D D, Xu Z X, Dong S S, Huo M X, Dong S S, Tian X D, Cui B, Xiong H F, Li T T, Ma D M. 2015. Intimate coupling of photocatalysis and biodegradation for degrading phenol using different light types:visible light vs UV light. Environ. Sci. Technol., 49(13):7 776-7 783.