Cite this paper:
ZANG Zhengrong, LI Yanhua, HU Qiang, HAN Danxiang. Unraveling enhanced membrane lipid biosynthesis in Chlamydomonas reinhardtii starchless mutant sta6 by using an electrospray ionization mass spectrometry-based lipidomics method[J]. Journal of Oceanology and Limnology, 2020, 38(3): 783-794

Unraveling enhanced membrane lipid biosynthesis in Chlamydomonas reinhardtii starchless mutant sta6 by using an electrospray ionization mass spectrometry-based lipidomics method

ZANG Zhengrong1,2,3, LI Yanhua1,2, HU Qiang1,2,4,5,6, HAN Danxiang1,2
1 Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China;
2 Key Laboratory for Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China;
3 University of Chinese Academy of Sciences, Beijing 100049, China;
4 State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China;
5 Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China;
6 Beijing Key Laboratory of Algae Biomass, Microalgae Biotechnology Center, SDIC Biotech Investment Co. Ltd., State Development & Investment Corp., Beijing 100142, China
Abstract:
The unicellular green alga Chlamydomonas reinhardtii, a well-established model organism, has been widely used in dissecting glycerolipid metabolism in oxygenating photosynthetic organisms. In previous studies, it has been found that shunting carbon precursors from the starch synthesis pathway can lead to a 10-fold increase in TAG content as compared to the wild type, but it is unknown whether inactivation of AGPase may affect membrane lipids biosynthesis. The study aims to investigate global changes in lipid metabolism and homeostasis in the starchless mutant C. reinhardtii sta6. By utilizing an electrospray ionization/mass spectrometry (ESI/MS)-based lipidomics approach, a total of 105 membrane lipid molecules of C. reinhardtii were resolved, including 16 monogalactosyldiacylglycerol (MGDG), 16 digalactosyldiacylglycerol (DGDG), 11 phosphatidylglycerol (PG), 6 sulfoquinovosyldiacylglycerol (SQDG), 49 diacylglyceryl-N,N,N-trimethylhomoserine (DGTS), 2 phosphatidylethanolamine (PE), and 5 phosphatidylinositol (PI) molecules. The quantitative results indicated that the membrane lipid profiles were similar between the two C. reinhardtii strains grown under both low- and high-light conditions, but the cellular contents of a great number of lipids were altered in sta6 due to the defect in starch biosynthesis. Under low-light conditions, sta6 accumulated more PI, MGDG, DGDG but less amounts of DGTS as compared to WT. Under high light, sta6 cells contained higher content membrane lipids than cc-124, except for PG, which is more or less similar in both strains. Our results demonstrate that the cellular membrane lipid homeostasis underwent profound changes in the starchless mutant, and thereby its physiological impact remains to be explored.
Key words:    Chlamydomonas reinhardtii|chloroplast lipidomes|extraplastidic lipidomes|electrospray ionization mass spectrometry   
Received: 2019-05-17   Revised: 2019-07-02
Tools
PDF (1228 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by ZANG Zhengrong
Articles by LI Yanhua
Articles by HU Qiang
Articles by HAN Danxiang
References:
Barbaglia A M, Hoffmann-Benning S. 2016. Long-distance lipid signaling and its role in plant development and stress response. In:Nakamura Y, Li-Beisson Y eds. Lipids in Plant and Algae Development. Springer, Cham. p.339-361.
Blaby I K, Glaesener A G, Mettler T, Fitz-Gibbon S T, Gallaher S D, Liu B S, Boyle N R, Kropat J, Stitt M, Johnson S, Benning C, Pellegrini M, Casero D, Merchant S S. 2013.Systems-level analysis of nitrogen starvation-induced modifications of carbon metabolism in a Chlamydomonas reinhardtii starchless mutant. The Plant Cell, 25(11):4 305-4 323, https://doi.org/10.1105/tpc.113.117580.
Block M A, Dorne A J, Joyard J, Douce R. 1983. Preparation and characterization of membrane fractions enriched in outer and inner envelope membranes from spinach chloroplasts. II. Biochemical characterization. Journal of Biological Chemistry, 258(21):13 273-13 286.
Boss W F, Im Y J. 2012. Phosphoinositide signaling. Annual Review of Plant Biology, 63(1):409-429, https://doi.org/10.1146/annurev-arplant-042110-103840.
Carrasco-Pancorbo A, Navas-Iglesias N, Cuadros-Rodríguez L. 2009. From lipid analysis towards lipidomics, a new challenge for the analytical chemistry of the 21st century.Part I:Modern lipid analysis. TrAC Trends in Analytical Chemistry, 28(3):263-278, https://doi.org/10.1016/j.trac.2008.12.004.
Cutignano A, Luongo E, Nuzzo G, Pagano D, Manzo E, Sardo A, Fontana A. 2016. Profiling of complex lipids in marine microalgae by UHPLC/tandem mass spectrometry. Algal Research, 17:348-358, https://doi.org/10.1016/j.algal.2016.05.016.
Da Costa E, Silva J, Mendonça S, Abreu M, Domingues M. 2016. Lipidomic approaches towards deciphering glycolipids from microalgae as a reservoir of bioactive lipids. Marine Drugs, 14(5):101, https://doi.org/10.3390/md14050101.
Dembitsky V M. 1996. Betaine ether-linked glycerolipids:chemistry and biology. Progress in Lipid Research, 35(1):1-51, https://doi.org/10.1016/0163-7827(95)00009-7.
Demé B, Cataye C, Block M, Maréchal E, Jouhet J. 2014.Contribution of galactoglycerolipids to the 3-dimensional architecture of thylakoids. The FASEB Journal, 28(8):3 373-3 383, https://doi.org/10.1096/fj.13-247395.
Diehl B W K, Herling H, Riedl I, Heinz E. 1995.13C-NMR analysis of the positional distribution of fatty acids in plant glycolipids. Chemistry and Physics of Lipids, 77(2):147-153, https://doi.org/10.1016/0009-3084(95)02462-r.
Fan J H, Zheng L H, Bai Y P, Saroussi S, Grossman A R. 2017.Flocculation of Chlamydomonas reinhardtii with different phenotypic traits by metal cations and high pH. Frontiers in Plant Science, 8:1 997, https://doi.org/10.3389/fpls.2017.01997.
Gorman D S, Levine R P. 1965. Cytochrome f and plastocyanin:their sequence in the photosynthetic electron transport chain of Chlamydomonas reinhardi. Proceedings of the National Academy of Sciences of the United States of America, 54(6):1 665-1 669, https://doi.org/10.1073/pnas.54.6.1665.
Goss R, Wilhelm C. 2009. Lipids in algae, lichens and mosses.In:Wada H, Murata N eds. Lipids in Photosynthesis.Springer, Dordrecht. p.117-137.
Guschina I A, Harwood J L. 2006. Lipids and lipid metabolism in eukaryotic algae. Progress in Lipid Research, 45(2):160-186, https://doi.org/10.1016/j.plipres.2006.01.001.
Han D X, Jia J, Li J, Sommerfeld M, Xu J, Hu Q. 2017.Metabolic remodeling of membrane glycerolipids in the microalga Nannochloropsis oceanica under nitrogen deprivation. Frontiers in Marine Science, 7:402, https://doi.org/10.3389/fmars.2017.00242.
Han X L, Gross R W. 2003. Global analyses of cellular lipidomes directly from crude extracts of biological samples by ESI mass spectrometry:a bridge to lipidomics.Journal of Lipid Research, 44(6):1 071-1 079, https://doi.org/10.1194/jlr.R300004-JLR200.
Han X L, Gross R W. 2005. Shotgun lipidomics:electrospray ionization mass spectrometric analysis and quantitation of cellular lipidomes directly from crude extracts of biological samples. Mass Spectrometry Reviews, 24(3):367-412, https://doi.org/10.1002/mas.20023.
Harris E H. 2001. Chlamydomonas as a model organism. Annu Rev Plant Phys, 52(1):363-406, https://doi.org/10.1146/annurev.arplant.52.1.363.
Harwood J L, Guschina I A. 2009. The versatility of algae and their lipid metabolism. Biochimie, 91(6):679-684, https://doi.org/10.1016/j.biochi.2008.11.004.
Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A. 2008. Microalgal triacylglycerols as feedstocks for biofuel production:perspectives and advances. The Plant Journal, 54(4):621-639, https://doi.org/10.1111/j.1365-313X.2008.03492.x.
Klug R M, Benning C. 2001. Two enzymes of diacylglycerylO-4'-(N, N, N,-trimethyl) homoserine biosynthesis are encoded by btaA and btaB in the purple bacterium Rhodobacter sphaeroides. Proceedings of the National Academy of Sciences of the United States of America, 98(10):5 910-5 915, https://doi.org/10.1073/pnas.101037998.
Kobayashi K, Endo K, Wada H. 2016. Roles of lipids in photosynthesis. In:Nakamura Y, Li-Beisson Y eds. Lipids in Plant and Algae Development. Springer, Cham. p.21-49.
Krishnan A, Kumaraswamy G K, Vinyard D J, Gu H Y, Ananyev G, Posewitz M C, Dismukes G C. 2015.Metabolic and photosynthetic consequences of blocking starch biosynthesis in the green alga Chlamydomonas reinhardtii sta6 mutant. The Plant Journal, 81(6):947-960, https://doi.org/10.1111/tpj.12783.
Lepetit B, Goss R, Jakob T, Wilhelm C. 2012. Molecular dynamics of the diatom thylakoid membrane under different light conditions. Photosynthesis Research, 111(1-2):245-257, https://doi.org/10.1007/s11120-011-9633-5.
Li Y T, Han D X, Hu G R, Dauvillee D, Sommerfeld M, Ball S, Hu Q. 2010a. Chlamydomonas starchless mutant defective in ADP-glucose pyrophosphorylase hyperaccumulates triacylglycerol. Metabolic Engineering, 12(4):387-391, https://doi.org/10.1016/j.ymben.2010.02.002.
Li Y T, Han D X, Hu G R, Sommerfeld M, Hu Q. 2010b.Inhibition of starch synthesis results in overproduction of lipids in Chlamydomonas reinhardtii. Biotechnology and Bioengineering, 107(2):258-268, https://doi.org/10.1002/bit.22807.
Li-Beisson Y, Beisson F, Riekhof W. 2015. Metabolism of acyl-lipids in Chlamydomonas reinhardtii. The Plant Journal, 82(3):504-522, https://doi.org/10.1111/tpj.12787.
Merchant S S, Kropat J, Liu B S, Shaw J, Warakanont J. 2012.TAG, you're it! Chlamydomonas as a reference organism for understanding algal triacylglycerol accumulation.Current Opinion in Biotechnology, 23(3):352-363, https://doi.org/10.1016/j.copbio.2011.12.001.
Moellering E R, Miller R, Benning C. 2009. Molecular genetics of lipid metabolism in the model green alga Chlamydomonas reinhardtii. In:Wada H, Murata N eds.Lipids in Photosynthesis. Springer, Dordrecht. p.139-155.
Murphy D J. 1982. The importance of non-planar bilayer regions in photosynthetic membranes and their stabilisation by galactolipids. FEBS Letters, 150(1):19-26, https://doi.org/10.1016/0014-5793(82)81297-0.
Řezanka T, Lukavský J, Vítová M, Nedbalová L, Sigler K. 2018. Lipidomic analysis of Botryococcus(Trebouxiophyceae, Chlorophyta)-Identification of lipid classes containing very long chain fatty acids by offline two-dimensional LC-tandem MS. Phytochemistry, 148:29-38, https://doi.org/10.1016/j.phytochem.2018.01.011.
Riekhof W R, Ruckle M E, Lydic T A, Sears B B, Benning C. 2003. The sulfolipids 2'-O-acylsulfoquinovosyldiacylglycerol and sulfoquinovosyldiacylglycerol are absent from a Chlamydomonas reinhardtii mutant deleted in SQD1.Plant Physiology, 133(2):864-874, https://doi.org/10.1104/pp.103.029249.
Sakurai I, Shen J R, Leng J, Ohashi S, Kobayashi M, Wada H. 2006. Lipids in oxygen-evolving photosystem II complexes of cyanobacteria and higher plants. The Journal of Biochemistry, 140(2):201-209, https://doi.org/10.1093/jb/mvj141.
Sen A, Williams W P, Quinn P J. 1981. The structure and thermotropic properties of pure 1, 2-diacylgalactosylglycerols in aqueous systems.Biochimica et Biophysica Acta (BBA)-Lipids and Lipid Metabolism, 663(2):380-389, https://doi.org/10.1016/0005-2760(81)90167-3.
Siaut M, Cuiné S, Cagnon C, Fessler B, Nguyen M, Carrier P, Beyly A, Beisson F, Triantaphylidès C, Li-Beisson Y, Peltier G. 2011. Oil accumulation in the model green alga Chlamydomonas reinhardtii:characterization, variability between common laboratory strains and relationship with starch reserves. BMC Biotechnology, 11:7, https://doi.org/10.1186/1472-6750-11-7.
Solovchenko A E, Khozin-Goldberg I, Didi-Cohen S, Cohen Z, Merzlyak M N. 2008. Effects of light intensity and nitrogen starvation on growth, total fatty acids and arachidonic acid in the green microalga Parietochloris incisa. Journal of Applied Phycology, 20(3):245-251, https://doi.org/10.1007/s10811-007-9233-0.
Sueoka N. 1960. Mitotic replication of deoxyribonucleic acid in Chlamydomonas reinhardi. Proceedings of the National Academy of Sciences of the United States of America, 46(1):83-91, https://doi.org/10.1073/pnas.46.1.83.
Tran Q G, Cho K, Park S B, Kim U, Lee Y J, Kim H S. 2019.Impairment of starch biosynthesis results in elevated oxidative stress and autophagy activity in Chlamydomonas reinhardtii. Scientific Reports, 9:9 856, https://doi.org/10.1038/s41598-019-46313-6.
UPLC-oaTOF-MS for lipid analysis in complex biological mixtures:A new tool for lipidomics. Journal of Proteome Research, 6(2):552-558, https://doi.org/10.1021/pr060611b.
Wada H, Murata N. 2007. The essential role of phosphatidylglycerol in photosynthesis. Photosynthesis Research, 92(2):205-215, https://doi.org/10.1007/s11120-007-9203-z.
Wang B B, Zhang Z, Hu Q, Sommerfeld M, Lu Y H, Han D X. 2014. Cellular capacities for high-light acclimation and changing lipid profiles across life cycle stages of the green alga Haematococcus pluvialis. PLoS One, 9(9):e106679, https://doi.org/10.1371/journal.pone.0106679.
Wang Z, Benning C. 2011. Arabidopsis thaliana polar glycerolipid profiling by thin layer chromatography(TLC) coupled with gas-liquid chromatography (GLC).Journal of Visualized Experiments, (49):2 518, https://doi.org/10.3791/2518.
Webb M S, Green B R. 1991. Biochemical and biophysical properties of thylakoid acyl lipids. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1060(2):133-158, https://doi.org/10.1016/S0005-2728(09)91002-7.
Welti R, Wang X M, Williams T D. 2003. Electrospray ionization tandem mass spectrometry scan modes for plant chloroplast lipids. Analytical Biochemistry, 314(1):149-152, https://doi.org/10.1016/S0003-2697(02)00623-1.
Xu Y N, Wang Z N, Yan X J, Lin W, Li L B, Kuang T Y. 2002.Positional distribution of fatty acids on the glycerol backbone during the biosynthesis of glycerolipids in Ectocarpus fasciculatus. Chinese Science Bulletin, 47(21):1 802-1 806, https://doi.org/10.1007/BF03183846.
Yang D W, Song D H, Kind T, Ma Y, Hoefkens J, Fiehn O. 2015. Lipidomic analysis of Chlamydomonas reinhardtii under nitrogen and sulfur deprivation. PLoS One, 10(9):e0137948, https://doi.org/10.1371/journal.pone.0137948.
Yoon K, Han D X, Li Y T, Sommerfeld M, Hu Q. 2012.Phospholipid:diacylglycerol acyltransferase is a multifunctional enzyme involved in membrane lipid turnover and degradation while synthesizing triacylglycerol in the unicellular green microalga Chlamydomonas reinhardtii. The Plant Cell, 24(9):3 708-3 724, https://doi.org/10.1105/tpc.112.100701.
Zabawinski C, Van Den Koornhuyse N, D'Hulst C, Schlichting R, Giersch C, Delrue B, Lacroix J M, Preiss J, Ball S. 2001. Starchless mutants of Chlamydomonas reinhardtii lack the small subunit of a heterotetrameric ADP-glucose pyrophosphorylase. Journal of Bacteriology, 183(3):1 069-1 077, https://doi.org/10.1128/jb.183.3.1069-1077.2001.
Copyright © Haiyang Xuebao