Cite this paper:
YANG Yue, XING Rong'e, LIU Song, QIN Yukun, LI Kecheng, YU Huahua, LI Pengcheng. PI3K/Akt pathway is involved in the activation of RAW 264.7 cells induced by hydroxypropyltrimethyl ammonium chloride chitosan[J]. HaiyangYuHuZhao, 2020, 38(3): 834-840

PI3K/Akt pathway is involved in the activation of RAW 264.7 cells induced by hydroxypropyltrimethyl ammonium chloride chitosan

YANG Yue1,2,3, XING Rong'e1,2, LIU Song1,2, QIN Yukun1,2, LI Kecheng1,2, YU Huahua1,2, LI Pengcheng1,2
1 Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China;
2 Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China;
3 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract:
We previously demonstrated that 2-hydroxypropyltrimethyl ammonium chloride chitosan (HACC) promoted the production of nitric oxide (NO) and proinflammatory cytokines by activating the mitogen-activated protein kinases (MAPK) and Janus kinase (JAK)/STAT pathways in RAW 264.7 cells, indicating good immunomodulatory activity of HACC. In this study, to further investigate the immunomodulatory mechanisms of HACC, we determined the roles of phosphatidylinositol 3-kinase (PI3K)/Akt, activating protein (AP-1) and nuclear factor kappa B (NF-κB) in HACC-induced activation of RAW 264.7 cells by the western blotting. The results suggest that HACC promoted the phosphorylation of p85 and Akt. Furthermore, c-Jun and p65 were also increased after the treatment of RAW 264.7 cells with HACC, indicating the translocation of NF-κB and AP-1 from cytoplasm to nucleus. In addition, as scanning electron microscopy (SEM) analysis shows, the cell morphology changed after HACC treatment. These findings indicate that HACC activated MAPK, JAK/STAT, and PI3K/Akt signaling pathways dependent on AP-1 and NF-κB activation in RAW 264.7 cells, ultimately leading to the increase of NO and cytokines.
Key words:    hydroxypropyltrimethyl ammonium chloride chitosan|RAW 264.7 cells|PI3K/Akt pathway|nuclear factor-κB|activating protein 1   
Received: 2019-01-19   Revised: 2019-06-28
Tools
PDF (1119 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by YANG Yue
Articles by XING Rong'e
Articles by LIU Song
Articles by QIN Yukun
Articles by LI Kecheng
Articles by YU Huahua
Articles by LI Pengcheng
References:
Cantley L C. 2002. The phosphoinositide 3-kinase pathway.Science, 296(5573):1 655-1 657.
Chae H S, Kang O H, Lee Y S, Choi J G, Oh Y C, Jang H J, Kim M S, Kim J H, Jeong S I, Kwon D Y. 2009. Inhibition of LPS-induced iNOS, COX-2 and inflammatory mediator expression by paeonol through the MAPKs inactivation in RAW 264.7 cells. Am. J. Chinese Med., 37(1):181-194.
Cheever M L, Sato T K, de Beer T, Kutateladze T G, Emr S D, Overduin M. 2001. Phox domain interaction with PtdIns(3)P targets the Vam7 t-SNARE to vacuole membranes. Nature Cell Biology, 3(7):613-618.
Chen J J, Huang W C, Chen C C. 2005. Transcriptional regulation of cyclooxygenase-2 in response to proteasome inhibitors involves reactive oxygen species-mediated signaling pathway and recruitment of CCAAT/enhancerbinding protein δ and CREB-binding protein. Mol. Biol.Cell, 16(12):5 579-5 591.
Fang R H, Zhang L F. 2016. Nanoparticle-based modulation of the immune system. Annu. Rev. Chem. Biomol. Eng., 7(1):305-326.
Gugasyan R, Grumont R, Grossmann M, Nakamura Y, Pohl T, Nesic D, Gerondakis S. 2000. Rel/NF-κB transcription factors:key mediators of B-cell activation. Immunol.Rev., 176(1):134-140.
Guha M, Mackman N. 2001. LPS induction of gene expression in human monocytes. Cellular Signalling, 13(2):85-94.
Gukovsky I, Gukovskaya A S, Blinman T A, Zaninovic V, Pandol S J. 1998. Early NF-κB activation is associated with hormone-induced pancreatitis. Am. J. Physiol., 275(6):G1 402-G1 414.
Hartley J W, Evans L H, Green K Y, Naghashfar Z, Macias A R, Zerfas P M, Ward J M. 2008. Expression of infectious murine leukemia viruses by RAW264.7 cells, a potential complication for studies with a widely used mouse macrophage cell line. Retrovirology, 5:1.
Hattori Y, Hattori S, Kasai K. 2003. Lipopolysaccharide activates Akt in vascular smooth muscle cells resulting in induction of inducible nitric oxide synthase through nuclear factor-kappa B activation. European Journal of Pharmacology, 481(2-3):153-158.
Johnson G L, Lapadat R. 2002. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science, 298(5600):1 911-1 912.
Kao S J, Lei H C, Kuo C T, Chang M S, Chen B C, Chang Y C, Chiu W T, Lin C H. 2005. Lipoteichoic acid induces nuclear factor-kappaB activation and nitric oxide synthase expression via phosphatidylinositol 3-kinase, Akt, and p38 MAPK in RAW 264.7 macrophages. Immunology, 115(3):366-374.
Karin M, Liu Z G, Zandi E. 1997. AP-1 function and regulation.Curr. Opin. Cell Biol., 9(2):240-246.
Katso R, Okkenhaug K, Ahmadi K, White S, Timms J, Waterfield M D. 2001. Cellular function of phosphoinositide 3-kinases:implications for development, immunity, homeostasis, and cancer. Annual Review of Cell and Developmental Biology, 17(1):615-675.
Koyasu S. 2003. The role of PI3K in immune cells. Nat.Immunol., 4(4):313-319.
Kurita K. 2006. Chitin and chitosan:functional biopolymers from marine crustaceans. Mar. Biotechno., 8(3):203-226.
Lee C G, Da Silva C A, Lee J Y, Hartl D, Elias J A. 2008.Chitin regulation of immune responses:an old molecule with new roles. Curr. Opin. Immunol., 20(6):684-689.
Li K K, Shen S S, Deng X Y, Shiu H T, Siu W S, Leung P C, Ko C H, Cheng B H. 2018. Dihydrofisetin exerts its antiinflammatory effects associated with suppressing ERK/p38 MAPK and Heme Oxygenase-1 activation in lipopolysaccharide-stimulated RAW 264.7 macrophages and carrageenan-induced mice paw edema. International Immunopharmacology, 54:366-374.
Li L, Wang L Y, Wu Z Q, Yao L J, Wu Y H, Huang L, Liu K, Zhou X, Gou D M. 2014. Anthocyanin-rich fractions from red raspberries attenuate inflammation in both RAW264.7 macrophages and a mouse model of colitis. Sci. Rep., 4:6 234.
Li Y, Qin Y K, Liu S, Li P C, Xing R E. 2016. Preparation, characterization, and antifungal activity of hymexazollinked chitosan derivatives. Chinese Journal of Oceanology and Limnology, 35(5):1 079-1 085.
Liang N, Sang Y X, Liu W H, Yu W L, Wang X H. 2018. AntiInflammatory effects of gingerol on lipopolysaccharidestimulated RAW 264.7 cells by inhibiting NF-κB signaling pathway. Inflammation, 41(3):835-845.
Liaqat F, Eltem R. 2018. Chitooligosaccharides and their biological activities:a comprehensive review. Carbohydr.Polym., 184:243-259.
Ma P, Liu H T, Wei P, Xu Q S, Bai X F, Du Y G, Yu C. 2011.Chitosan oligosaccharides inhibit LPS-induced overexpression of IL-6 and TNF-α in RAW264.7 macrophage cells through blockade of mitogen-activated protein kinase (MAPK) and PI3K/Akt signaling pathways.Carbohydr. Polym., 84(4):1 391-1 398.
Musti A M, Treier M, Bohmann D. 1997. Reduced ubiquitindependent degradation of c-Jun after phosphorylation by MAP Kinases. Science, 275(5298):400-402.
Nishimura K, Nishimura S, Nishi N, Saiki I, Tokura S, Azuma I. 1984. Immunological activity of chitin and its derivatives. Vaccine, 2(1):93-99.
Nyati K K, Masuda K, Zaman M M U, Dubey P K, Millrine D, Chalise J P, Higa M, Li S L, Standley D M, Saito K, Hanieh H, Kishimoto T. 2017. TLR4-induced NF-κB and MAPK signaling regulate the IL-6 mRNA stabilizing protein Arid5a. Nucleic Acids Res., 45(5):2 687-2 703.
Pillai C K S, Paul W, Sharma C P. 2009. Chitin and chitosan polymers:chemistry, solubility and fiber formation.Progress in Polymer Science, 34(7):641-678.
Poltorak A, He X L, Smirnova I, Liu M Y, van Huffel C, Du X, Birdwell D, Alejos E, Silva M, Galanos C, Freudenberg M, Ricciardi-Castagnoli P, Layton B, Beutler B. 1998. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice:mutations in Tlr4 gene. Science, 282(5396):2 085-2 088.
Raschke W C, Baird S, Ralph P, Nakoinz I. 1978. Functional macrophage cell lines transformed by abelson leukemia virus. Cell, 15(1):261-267.
Schindler C, Levy D E, Decker T. 2007. JAK-STAT signaling:from interferons to cytokines. J. Biol. Chem., 282(28):20 059-20 063.
Shen T, Yang W S, Yi Y S, Sung G H, Rhee M H, Poo H, Kim M Y, Kim K W, Kim J H, Cho J Y. 2013. AP-1/IRF-3 targeted anti-Inflammatory activity of andrographolide isolated from Andrographis paniculata. Evid. Based Complement Alternat. Med., 2013(4):210 736.
Sun H X, Zhang J, Chen F Y, Chen X F, Zhou Z H, Wang H. 2015. Activation of RAW264.7 macrophages by the polysaccharide from the roots of Actinidia eriantha and its molecular mechanisms. Carbohydr. Polym., 121:388-402.
Tang B, Li X, Ren Y, Wang J, Xu D, Hang Y, Zhou T, Li F, Wang L. 2017. MicroRNA-29a regulates lipopolysaccharide (LPS)-induced inflammatory responses in murine macrophages through the Akt1/NFkappaB pathway. Exp. Cell Res., 360(2):74-80.
Wen Q, Mei L Y, Ye S, Liu X, Xu Q, Miao J F, Du S H, Chen D F, Li C, Li H. 2018. Chrysophanol demonstrates antiinflammatory properties in LPS-primed RAW 264.7 macrophages through activating PPAR-γ. International Immunopharmacology, 56:90-97.
Wymann M P, Pirola L. 1998. Structure and function of phosphoinositide 3-kinases. BBA-Mol. Cell. Biol. Lipids, 1436(1-2):127-150.
Yang Y, Xing R E, Liu S, Qin Y K, Li K C, Yu H H, Li P C. 2019. Hydroxypropyltrimethyl ammonium chloride chitosan activates RAW 264.7 macrophages through the MAPK and JAK-STAT signaling pathways. Carbohydr.Polym., 205:401-409.
Youn G S, Lee K W, Choi S Y, Park J. 2016. Overexpression of HDAC6 induces pro-inflammatory responses by regulating ROS-MAPK-NF-κB/AP-1 signaling pathways in macrophages. Free Radical Biology and Medicine, 97:14-23.
Yu Y, Shen M Y, Wang Z J, Wang Y X, Xie M Y, Xie J H. 2017.Sulfated polysaccharide from Cyclocarya paliurus enhances the immunomodulatory activity of macrophages.Carbohydr. Polym., 174:669-676.
Zhang Q, Wang L R, Chen B H, Zhuo Q, Bao C Y, Lin L. 2017.Propofol inhibits NF-κB activation to ameliorate airway inflammation in ovalbumin (OVA)-induced allergic asthma mice. International Immunopharmacology, 51:158-164.
Zhang Y, Igwe O J. 2018. Exogenous oxidants activate nuclear factor kappa B through Toll-like receptor 4 stimulation to maintain inflammatory phenotype in macrophage.Biochem. Pharmacol., 147:104-118.