Cite this paper:
ZHANG Rong-Hua, YU Yongqiang, SONG Zhenya, REN Hong-Li, TANG Youmin, QIAO Fangli, WU Tongwen, GAO Chuan, HU Junya, TIAN Feng, ZHU Yuchao, CHEN Lin, LIU Hailong, LIN Pengfei, WU Fanghua, WANG Lin. A review of progress in coupled ocean-atmosphere model developments for ENSO studies in China[J]. Journal of Oceanology and Limnology, 2020, 38(4): 930-961

A review of progress in coupled ocean-atmosphere model developments for ENSO studies in China

ZHANG Rong-Hua1,2,3,4, YU Yongqiang4,5, SONG Zhenya6,7,8,9, REN Hong-Li10,11, TANG Youmin12,13, QIAO Fangli6,7,8,9, WU Tongwen14, GAO Chuan1,2, HU Junya1,2, TIAN Feng1,2, ZHU Yuchao1,2, CHEN Lin5,14, LIU Hailong5, LIN Pengfei5, WU Fanghua15, WANG Lin10,11
1 Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology, and Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China;
2 Laboratory for Ocean and Climate Dynamics, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China;
3 Center for Excellence in Quaternary Science and Global Change, Chinese Academy of Sciences, Xi'an 710061, China;
4 University of Chinese Academy of Sciences, Beijing 100049, China;
5 LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100049, China;
6 First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China;
7 Laboratory for Regional Oceanography and Numerical Modeling, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China;
8 Key Laboratory of Marine Science and Numerical Modeling (MASNUM), Ministry of Natural Resources, Qingdao 266061, China;
9 National Engineering Laboratory for Integrated Aero-Space-Ground-Ocean Big Data Application Technology, Qingdao 266061, China;
10 State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100081, China;
11 Laboratory for Climate Studies and CMA-NJU Joint Laboratory for Climate Prediction Studies, National Climate Center, China Meteorological Administration, Beijing 100081, China;
12 Environmental Science and Engineering, University of Northern British Columbia, British Columbia V2N 4Z9, Canada;
13 State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China;
14 Key Laboratory of Meteorological Disaster, Ministry of Education (KLME), and Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing 210044, China;
15 Beijing Climate Center, China Meteorological Administration, Beijing 100081, China
Abstract:
El Niño-Southern Oscillation (ENSO) is the strongest interannual signal that is produced by basinscale processes in the tropical Pacific, with significant effects on weather and climate worldwide. In the past, extensive and intensive international efforts have been devoted to coupled model developments for ENSO studies. A hierarchy of coupled ocean-atmosphere models has been formulated; in terms of their complexity, they can be categorized into intermediate coupled models (ICMs), hybrid coupled models (HCMs), and fully coupled general circulation models (CGCMs). ENSO modeling has made significant progress over the past decades, reaching a stage where coupled models can now be used to successfully predict ENSO events 6 months to one year in advance. Meanwhile, ENSO exhibits great diversity and complexity as observed in nature, which still cannot be adequately captured by current state-of-the-art coupled models, presenting a challenge to ENSO modeling. We primarily reviewed the long-term efforts in ENSO modeling continually and steadily made at different institutions in China; some selected representative examples are presented here to review the current status of ENSO model developments and applications, which have been actively pursued with noticeable progress being made recently. As ENSO simulations are very sensitive to model formulations and process representations etc., dedicated efforts have been devoted to ENSO model developments and improvements. Now, different ocean-atmosphere coupled models have been available in China, which exhibit good model performances and have already had a variety of applications to climate modeling, including the Coupled Model Intercomparison Project Phase 6 (CMIP6). Nevertheless, large biases and uncertainties still exist in ENSO simulations and predictions, and there are clear rooms for their improvements, which are still an active area of researches and applications. Here, model performances of ENSO simulations are assessed in terms of advantages and disadvantages with these differently formulated coupled models, pinpointing to the areas where they need to be further improved for ENSO studies. These analyses provide valuable guidance for future improvements in ENSO simulations and predictions.
Key words:    El Niño-Southern Oscillation (ENSO)|coupled ocean-atmosphere models|simulations and predictions|model biases and uncertainties   
Received: 2020-04-10   Revised: 2020-05-07
Tools
PDF (3696 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by ZHANG Rong-Hua
Articles by YU Yongqiang
Articles by SONG Zhenya
Articles by REN Hong-Li
Articles by TANG Youmin
Articles by QIAO Fangli
Articles by WU Tongwen
Articles by GAO Chuan
Articles by HU Junya
Articles by TIAN Feng
Articles by ZHU Yuchao
Articles by CHEN Lin
Articles by LIU Hailong
Articles by LIN Pengfei
Articles by WU Fanghua
Articles by WANG Lin
References:
AchutaRao K, Sperber K. 2002. Simulation of the El NiñoSouthern Oscillation: results from the coupled model intercomparison project. Climate Dynamics, 19(3-4):191-209, https://doi.org/10.1007/s00382-001-0221-9.
Bao Q, Lin P F, Zhou T J, Liu Y M, Yu Y Q, Wu G X, He B, He J, Li L J, Li J D, Li Y C, Liu H L, Qiao F L, Song Z Y, Wang B, Wang J, Wang P F, Wang X C, Wang Z Z, Wu B, Wu T W, Xu Y F, Yu H Y, Zhao W, Zheng W P, Zhou L J. 2013. The Flexible Global Ocean-Atmosphere-Land system model, Spectral Version 2: FGOALS-s2. Advances in Atmospheric Sciences, 30(3): 561-576, https://doi.org/10.1007/s00376-012-2113-9.
Barnett T P, Graham N, Pazan S, White W, Latif M, Flügel M. 1993. ENSO and ENSO-related predictability. Part I:Prediction of equatorial Pacific sea surface temperature with a hybrid coupled ocean-atmosphere model. Journal ofClimate,6(8): 1 545-1 566, https://doi.org/10.1175/1520-0442(1993)006<1545:eaerpp>2.0.co;2.
Barnston A G, Tippett M K, L’Heureux M L, Li S H, DeWitt D G. 2012. Skill of real-time seasonal ENSO model predictions during 2002-11: is our capability increasing? Bulletin of the American Meteorological Society, 93(5):631-651, https://doi.org/10.1175/BAMS-D-11-00111.1.
Battisti D S, Hirst A C. 1989. Interannual variability in a tropical atmosphere-ocean model: influence of the basic state, ocean geometry and nonlinearity. Journal of the Atmospheric Sciences, 46(12): 1 687-1 712, https://doi.org/10.1175/1520-0469(1989)046<1687:iviata>2.0.co;2.
Bellenger H, Guilyardi É, Leloup J, Lengaigne M, Vialard J. 2014. ENSO representation in climate models: from CMIP3 to CMIP5. Climate Dynamics, 42(7-8): 1 999-2 018, https://doi.org/10.1007/s00382-013-1783-z.
Bjerknes J. 1969. Atmospheric teleconnections from the equatorial Pacific. Monthly Weather Review, 97(3): 163-172, https://doi.org/10.1175/1520-0493(1969)097<0163:at ftep>2.3.co;2.
Bryan K, Manabe S, Pacanowski R C. 1975. A global oceanatmosphere climate model. Part Ⅱ: the oceanic circulation.Journal of Physical Oceanography, 5(1): 30-46, https://doi.org/10.1175/1520-0485(1975)005<0030:agoacm>2.0.co;2.
Busalacchi A J, O’Brien J J. 1980. The seasonal variability in a model of the tropical Pacific. Journal of Physical Oceanography, 10(12): 1 929-1 951, https://doi.org/10.1175/1520-0485(1980)010<1929:tsviam>2.0.co;2.
Cai W J, Wang G J, Dewitte B, Wu L X, Santoso A, Takahashi K, Yang Y, Carréric A, McPhaden M J. 2018. Increased variability of eastern Pacific El Niño under greenhouse warming. Nature, 564(7735): 201-206, https://doi.org/10.1038/s41586-018-0776-9.
Cane M A, Zebiak S E. 1985. A theory for El Niño and the Southern Oscillation. Science, 228(4703): 1 085-1 087, https://doi.org/10.1126/science.228.4703.1085.
Cane M A, Zebiak S E, Dolan S C. 1986. Experimental forecasts of El Niño. Nature, 321(6073): 827-832, https://doi.org/10.1038/321827a0.
Capotondi A, Wittenberg A T, Newman M, Di Lorenzo E, Yu J Y, Braconnot P, Cole J, Dewitte B, Giese B, Guilyardi E, Jin F F, Karnauskas K, Kirtman B, Lee T, Schneider N, Xue Y, Yeh S W. 2015. Understanding ENSO diversity.Bulletin of the American Meteorological Society, 96(6):921-938, https://doi.org/10.1175/BAMS-D-13-00117.1.
Chang P, Ji L, Saravanan R. 2001. A hybrid coupled model study of tropical Atlantic variability. Journal of Climate, 14(3): 361-390, https://doi.org/10.1175/1520-0442(2001) 013<0361:ahcmso>2.0.co;2.
Chao J P. 1993. El Niño and Southern Oscillation Dynamics.China Meteorological Press, Beijing, China. (in Chinese)
Chen D K, Lian T, Fu C B, Cane M A, Tang Y M, Murtugudde R, Song X S, Wu Q Y, Zhou L. 2015. Strong influence of westerly wind bursts on El Niño diversity. Nature Geoscience, 8(5): 339-345, https://doi.org/10.1038/ngeo2399.
Chen D K, Rothstein L M, Busalacchi A J. 1994. A hybrid vertical mixing scheme and its application to tropical ocean models. Journal of Physical Oceanography, 24(10): 2 156-2 179, https://doi.org/10.1175/1520-0485(1994)024<2156:ahvmsa>2.0.co;2.
Chen D K, Zebiak S E, Busalacchi A J, Cane M A. 1995. An improved procedure for El Niño forecasting: implications for predictability. Science, 269(5231): 1 699-1 702, https://doi.org/10.1126/science.269.5231.1699.
Chen L, Yu Y Q, Zheng W P. 2016. Improved ENSO simulation from climate system model FGOALS-g1.0 to FGOALS-g2. Climate Dynamics, 47(7-8): 2 617-2 634, https://doi.org/10.1007/s00382-016-2988-8.
Chen S Y, Qiao F L, Huang C J, Song Z Y. 2018. Effects of the non-breaking surface wave-induced vertical mixing on winter mixed layer depth in subtropical regions. Journal of Geophysical Research: Oceans, 123(4): 2 934-2 944, https://doi.org/10.1002/2017JC013038.
Chen X R, Liao H X, Lei X Y, Bao Y, Song Z Y. 2019. Analysis of ENSO simulation biases in FIO-ESM version 1.0.Climate Dynamics, 53(11): 6 933-6 946, https://doi.org/10.1007/s00382-019-04969-w.
Cox M D. 1975. A baroclinic numerical model of the world ocean: preliminary results. In: Numerical Models of Ocean Circulation. National Academy of Sciences, Washington, D.C. p.107-120.
Delecluse P, Davey M K, Kitamura Y, Philander S G H, Suarez M, Bengtsson L. 1998. Coupled general circulation modeling of the tropical Pacific. Journal of Geophysical Research: Oceans, 103(C7): 14 357-14 373, https://doi.org/10.1029/97JC02546.
Ding Y H, Li Q Q, Li W J, Luo Y, Zhang P Q, Zhang Z Q, Shi X L, Liu Y M, Wang L L. 2004. Advance in seasonal dynamical prediction operation in China. Acta Meteor.Sinica, 62(5): 598-612. (in Chinese)
Dukowicz J K, Smith R D. 1994. Implicit free-surface method for the Bryan-Cox-Semtner ocean model. Journal of Geophysical Research: Oceans, 99(C4): 7 991-8 014, https://doi.org/10.1029/93JC03455.
Eyring V, Bony S, Meehl G A, Senior C A, Stevens B, Stouffer R J, Taylor K E. 2016. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development, 9(5): 1 937-1 958, https://doi.org/10.5194/gmd-9-1937-2016.
Fang X H, Xie R H. 2020. A brief review of ENSO theories and prediction. Science China-Earth Sciences, 63(4):476-491, https://doi.org/10.1007/s11430-019-9539-0.
Fedorov A V, Harper S L, Philander S G, Winter B, Wittenberg A. 2003. How predictable is El Niño? Bulletin of the American Meteorological Society, 84(7): 911-920, https://doi.org/10.1175/BAMS-84-7-911.
Feng L C, Zhang R H, Wang Z G, Chen X R. 2015. Processes leading to second-year cooling of the 2010-12 La Niña event, diagnosed using GODAS. Advances in Atmospheric Sciences, 32(3): 424-438, https://doi.org/10.1007/s00376-014-4012-8.
Ferrett S, Collins M, Ren H L, Wu B, Zhou T J. 2020. The role of tropical mean-state biases in modeled winter northern hemisphere El Niño teleconnections. Journal of Climate, 33(11): 4 751-4 768, https://doi.org/10.1175/JCLI-D-19-0668.1.
Gao C, Wu X R, Zhang R H. 2016. Testing a four-dimensional variational data assimilation method using an improved intermediate coupled model for ENSO analysis and prediction. Advances in Atmospheric Sciences, 33(7):875-888, https://doi.org/10.1007/s00376-016-5249-1.
Gao C, Zhang R H, Karnauskas K B, Zhang L, Tian F. 2020.Separating freshwater flux effects on ENSO in a hybrid coupled model of the tropical Pacific. Climate Dynamics, 54(11): 4 605-4 626, https://doi.org/10.1007/s00382-020-05245-y.
Gao C, Zhang R H, Wu X R, Sun J C. 2018. Idealized experiments for optimizing model parameters using a 4D-Variational method in an intermediate coupled model of ENSO. Advances in Atmospheric Sciences, 35(4): 410-422, https://doi.org/10.1007/s00376-017-7109-z.
Gent P R, Cane M A. 1989. A reduced gravity, primitive equation model of the upper equatorial ocean. Journal of Computational Physics, 81(2): 444-480, https://doi.org/10.1016/0021-9991(89)90216-7.
Gill A E. 1980. Some simple solutions for heat-induced tropical circulation. Quarterly Journal of the Royal Meteorological Society, 106(449): 447-462, https://doi.org/10.1002/qj.49710644905.
Gordon C, Corry R A. 1991. A model simulation of the seasonal cycle in the tropical Pacific Ocean using climatological and modeled surface forcing. Journal of Geophysical Research: Oceans, 96(C1): 847-864, https://doi.org/10.1029/90JC01403.
Griffies S M, Harrison M J, Pacanowski R C et al. 2008. A technical guide to MOM4, GFDL ocean group technical report No. 5. NOAA/Geophysical Fluid Dynamics Laboratory, p.1-291.
Guilyardi E, Gualdi S, Slingo J, Navarra A, Delecluse P, Cole J, Madec G, Roberts M, Latif M, Terray L. 2004.Representing El Niño in coupled ocean-atmosphere GCMs: the dominant role of the atmospheric component.Journal of Climate, 17(24): 4 623-4 629, https://doi.org/10.1175/JCLI-3260.1.
Guo Y Y, Yu Y Q, Lin P F, Liu H L, He B, Bao Q, Zhao S W, Wang X W. 2020. Overview of the CMIP6 historical experiment datasets with the climate system model CAS FGOALS-f3-L. Advances in Atmospheric Sciences, https://doi.org/10.1007/s00376-020-2004-4.
Ham Y G, Kug J S. 2012. How well do current climate models simulate two types of El Niño? Climate Dynamics, 39(1-2): 383-398, https://doi.org/10.1007/s00382-011-1157-3.
Ham Y G, Kug J S. 2014. ENSO phase-locking to the boreal winter in CMIP3 and CMIP5 models. Climate Dynamics, 43(1-2): 305-318, https://doi.org/10.1007/s00382-014-2064-1.
Han Y J. 1984. A numerical world ocean general circulation model: Part Ⅱ. A baroclinic experiment. Dynamics of Atmospheres and Oceans, 8(2): 141-172, https://doi.org/10.1016/0377-0265(84)90020-4.
Haney R L. 1974. A numerical study of the response of an idealized ocean to large-scale surface heat and momentum flux. Journal of Physical Oceanography, 4(2): 145-167.ttps://doi.org/10.1175/1520-0485(1974)004<0145:ansotr>2.0.co;2.
Hu J Y, Zhang R H, Gao C. 2019. A hybrid coupled oceanatmosphere model and its simulation of ENSO and atmospheric responses. Advances in Atmospheric Sciences, 36(6): 643-657, https://doi.org/10.1007/s00376-019-8197-8.
Hu Z Z, Kumar A, Ren H L, Wang H, L’Heureux M, Jin F F. 2013. Weakened interannual variability in the tropical Pacific Ocean since 2000. Journal of Climate, 26(8):2 601-2 613, https://doi.org/10.1175/JCLI-D-12-00265.1.
Ji M, Leetmaa A, Kousky V E. 1996. Coupled model predictions of ENSO during the 1980s and the 1990s at the national centers for environmental prediction. Journal of Climate, 9(12): 3 105-3 120, https://doi.org/10.1175/1520-0442(1996)009<3105:CMPOED>2.0.CO;2.
Jin F F. 1997. An equatorial ocean recharge paradigm for ENSO.Part I: conceptual model. Journal of the Atmospheric Sciences, 54(7): 811-829, https://doi.org/10.1175/1520-0469(1997)054<0811:AEORPF>2.0.CO;2.
Jin F F, An S I. 1999. Thermocline and zonal advective feedbacks within the equatorial ocean recharge oscillator model for ENSO. Geophysical Research Letters, 26(19):2 989-2 992, https://doi.org/10.1029/1999GL002297.
Jin E K, Kinter J L Ⅲ, Wang B, Park C K, Kang I S, Kirtman B P, Kug J S, Kumar A, Luo J J, Schemm J, Shukla J, Yamagata T. 2008. Current status of ENSO prediction skill in coupled ocean-atmosphere models. Climate Dynamics, 31(6): 647-664, https://doi.org/10.1007/s00382-008-0397-3.
Kang X B, Zhang R H, Gao C, Zhu J S. 2017a. An improved ENSO simulation by representing chlorophyll-induced climate feedback in the NCAR Community Earth System Model. Scientific Reports, 7: 17123, https://doi.org/10.1038/s41598-017-17390-2.
Kang X B, Zhang R H, Wang G S. 2017b. Effects of different freshwater flux representations in an ocean general circulation model of the tropical Pacific. Science Bulletin, 62(5): 345-351, https://doi.org/10.1016/j.scib.2017.02.002.
Kang I S, Kug J S. 2000. An El-Niño prediction system using an intermediate ocean and a statistical atmosphere.Geophysical Research Letters, 27(8): 1 167-1 170, https://doi.org/10.1029/1999GL011023.
Keenlyside N, Kleeman R. 2002. Annual cycle of equatorial zonal currents in the Pacific. Journal of Geophysical Research, 107(C8): 8-1-8-13, https://doi.org/10.1029/2000JC000711.
Killworth P D, Webb D J, Stainforth D, Paterson S M. 1991. The development of a free-surface Bryan-Cox-Semtner ocean model. Journal of Physical Oceanography, 21(9):1 333-1 348, https://doi.org/10.1175/1520-0485(1991)021<1333:tdoafs>2.0.co;2.
Kirtman B P, Schopf P S. 1998. Decadal variability in ENSO predictability and prediction. Journal of Climate, 11(11):2 804-2 822, https://doi.org/10.1175/1520-0442(1998) 011<2804:DVIEPA>2.0.CO;2.
Kleeman R. 1993. On the dependence of hindcast skill on ocean thermodynamics in a coupled ocean-atmosphere model. Journal of Climate, 6(11): 2 012-2 033, https://doi.org/10.1175/1520-0442(1993)006<2012:OTDOHS>2.0.CO;2.
Kraus E B, Turner J S. 1967. A one-dimensional model of the seasonal thermocline Ⅱ. The general theory and its consequence. Tellus, 19(1): 98-106, https://doi.org/10.1111/j.2153-3490.1967.tb01462.x.
Latif M. 1987. Tropical ocean circulation experiments. Journal of Physical Oceanography, 17(2): 246-263, https://doi.org/10.1175/1520-0485(1987)017<0246:TOCE>2.0.CO;2.
Latif M, Anderson D, Barnett T, Cane M, Kleeman R, Leetmaa A, O’Brien J, Rosati A, Schneider E. 1998. A review of the predictability and prediction of ENSO. Journal of Geophysical Research: Oceans, 103(C7): 14 375-14 393, https://doi.org/10.1029/97JC03413.
Latif M, Sperber K, Arblaster J, Braconnot P, Chen D, Colman A, Cubasch U, Cooper C, Delecluse P, Dewitt D, Fairhead L, Flato G, Hogan T, Ji M, Kimoto M, Kitoh A, Knutson T, Le Treut H, Li T, Manabe S, Marti O, Mechoso C, Meehl G, Power S, Roeckner E, Sirven J, Terray L, Vintzileos A, Voβ R, Wang B, Washington W, Yoshikawa I, Yu J, Zebiak S. 2001. ENSIP: the El Niño simulation intercomparison project. Climate Dynamics, 18(3-4):255-276, https://doi.org/10.1007/s003820100174.
Li J X, Bao Q, Liu Y M, Wu G X, Wang L, He B, Wang X C, Li J D. 2019. Evaluation of FAMIL2 in simulating the climatology and seasonal-to-interannual variability of tropical cyclone characteristics. Journal of Advances in Modeling Earth Systems, 11(4): 1 117-1 136, https://doi.org/10.1029/2018ms001506.
Li L J, Lin P F, Yu Y Q, Wang B, Zhou T J, Liu L, Liu J P, Bao Q, Xu S M, Huang W Y, Xia K, Pu Y, Dong L, Shen S, Liu Y M, Hu N, Liu M M, Sun W Q, Shi X J, Zheng W P, Wu B, Song M R, Liu H L, Zhang X H, Wu G X, Xue W, Huang X M, Yang G W, Song Z Y, Qiao F L. 2013b. The flexible global ocean-atmosphere-land system model, Grid-point Version 2: FGOALS-g2. Advances in Atmospheric Sciences, 30(3): 543-560, https://doi.org/10.1007/s00376-012-2140-6.
Li L J, Wang B, Dong L, Liu L, Shen S, Hu N, Sun W Q, Wang Y, Huang W Y, Shi X J, Pu Y, Yang G W. 2013a. Evaluation of grid-point atmospheric model of IAP LASG version 2(GAMIL2). Advances in Atmospheric Sciences, 30(3):855-867, https://doi.org/10.1007/s00376-013-2157-5.
Li L J, Yu Y Q, Tang Y L, Lin P F, Xie J B, Song M R, Dong L, Zhou T J, Liu L, Wang L, Pu Y, Chen X L, Chen L, Xie Z H, Liu H B, Zhang L X, Huang X, Feng T, Zheng W P, Xia K, Liu H L, Liu J P, Wang Y, Wang L H, Jia B H, Xie F, Wang B, Zhao S W, Yu Z P, Zhao B W, Wei J L. 2020. The flexible global ocean-atmosphere-land system model grid-point version 3 (FGOALS-g3): description and evaluation. Journal of Advances in Modeling Earth Systems, https://doi.org/10.1029/2019MS002012.
Li W P, Zhang Y W, Shi X L, Zhou W Y, Huang A M, Mu M Q, Qiu B, Ji J J. 2019. Development of land surface model BCC_AVIM2.0 and its preliminary performance in LS3MIP/CMIP6. Journal of Meteorological Research, 33(5): 851-869, https://doi.org/10.1007/s13351-019-9016-y.
Lian T, Chen D K, Tang Y M, Wu Q Y. 2014. Effects of westerly wind bursts on El Niño: a new perspective. Geophysical Research Letters, 41(10): 3 522-3 527, https://doi.org/10.1002/2014GL059989.
Lin P F, Yu Z P, Liu H L et al. 2019. LICOM Model datasets for CMIP6 Ocean Model Intercomparison Project (OMIP).Advances in Atmospheric Sciences, 37(3): 239-249, https://doi.org/10.1007/s00376-019-9208-5.
Liu H L, Zhang X H, Li W, Yu Y Q, Yu R C. 2004. An eddypermitting oceanic general circulation model and its preliminary evaluation. Advances in Atmospheric Sciences, 21(5): 675-690, https://doi.org/10.1007/BF02916365.
Liu Y M, Hu J, He B, Bao Q, Duan A M, Wu G X. 2014.Seasonal evolution of the subtropical anticyclones simulated in FGOALS-s2. In: Zhou T J, Yu Y, Liu Y, Wang B eds. Flexible Global Ocean-Atmosphere-Land System Model. Springer, Berlin, Heidelberg. p.115-122.
Lu B, Jin F F, Ren H L. 2018. A coupled dynamic index for ENSO periodicity. Journal of Climate, 31(6): 2 361-2 376, http://dx.doi.org/10.1175/JCLI-D-17-0466.1.
Lu B, Ren H L. 2016. Improving ENSO periodicity simulation by adjusting cumulus entrainment in BCC_CSMs.Dynamics of Atmospheres and Oceans, 76: 127-140, https://doi.org/10.1016/j.dynatmoce.2016.10.005.
Lu B, Ren H L. 2019. ENSO features, dynamics, and teleconnections to East Asian climate as simulated in CAMS-CSM. Journal of Meteorological Research, 33(1):46-65, https://doi.org/10.1007/s13351-019-8101-6.
Luo J J, Liu G Q, Hendon H, Alves O, Yamagata T. 2017. Interbasin sources for two-year predictability of the multi-year La Niña event in 2010-2012. Scientific Reports, 7: 2 276, https://doi.org/10.1038/s41598-017-01479-9.
Manabe S, Bryan K, Spelman M J. 1979. A global oceanatmosphere climate model with seasonal variation for future studies of climate sensitivity. Dynamics of Atmospheres and Oceans, 3(2-4): 393-426, https://doi.org/10.1016/0377-0265(79)90021-6.
McCreary J P. 1981. A linear stratified ocean model of the equatorial undercurrent. Philosophical Transactions of the Royal Society of London, 298(1444): 603-635, https://doi.org/10.1098/rsta.1981.0002.
McCreary J P Jr, Anderson D L T. 1991. An overview of coupled ocean-atmosphere models of El Niño and the Southern Oscillation. Journal of Geophysical Research:Oceans, 96(S01): 3 125-3 150, https://doi.org/10.1029/90JC01979.
McPhaden M J, Zebiak S E, Glantz M H. 2006. ENSO as an integrating concept in earth science. Science, 314(5806): 1 740-1 745, https://doi.org/10.1126/science.1132588.
Moore D W, Philander S G H. 1977. Modeling of the tropical ocean circulation. In: Goldberg E D, Cave I N, O’Brien J J, Steek J H eds. The Sea. Wiley, New York. p.319-361.
Mu B, Ren J H, Yuan S J, Zhang R H, Chen L, Gao C. 2019.The optimal precursors for ENSO events depicted using the gradient-definition-based method in an intermediate coupled model. Advances in Atmospheric Sciences, 36(12): 1 381-1 392, https://doi.org/10.1007/s00376-019-9040-y.
Mu M, Ren H L. 2017. Enlightenments from researches and predictions of 2014-2016 super El Niño event. Science China Earth Sciences, 60(9): 1 569-1 571, https://doi.org/10.1007/s11430-017-9094-5.
Mu M, Xu H, Duan W S. 2007. A kind of initial errors related to “spring predictability barrier” for El Niño events in Zebiak-Cane model. Geophysical Research Letters, 34:L03709, https://doi.org/10.1029/2006GL027412.
Neelin J D, Battisti D S, Hirst A C, Jin F F, Wakata Y, Yamagata T, Zebiak S E. 1998. ENSO theory. Journal of Geophysical Research: Oceans, 103(C7): 14 261-14 290, https://doi.org/10.1029/97JC03424.
Neelin J D, Jin F F. 1993. Modes of interannual tropical oceanatmosphere interaction-a unified view. Part Ⅱ: analytical results in the weak-coupling limit. Journal of the Atmospheric Sciences, 50(21): 3 504-3 522, https://doi.org/10.1175/1520-0469(1993)050<3504:MOITOI>2.0.CO;2.
Neelin J D, Latif M, Allaart M A F, Cane M A, Cubasch U, Gates W L, Gent P R, Ghil M, Gordon C, Lau N C, Mechoso C R, Meehl G A, Oberhuber J M, Philander S G H, Schopf P S, Sperber K R, Sterl K R, Tokioka T, Tribbia J, Zebiak S E. 1992. Tropical air-sea interaction in general circulation models. Climate Dynamics, 7(2): 73-104, https://doi.org/10.1007/BF00209610.
Pacanowski R C, Griffies S M. 1998. MOM 3.0 Manual.NOAA/Geophysical Fluid Dynamics Laboratory, USA.
Pacanowski R C, Philander S G H. 1981. Parameterization of vertical mixing in numerical models of tropical oceans.Journal of Physical Oceanography, 11(11): 1 443-1 451, https://doi.org/10.1175/1520-0485(1981)011<1443:povm in>2.0.co;2.
Philander S G. 1999. A review of tropical ocean-atmosphere interactions. Tellus B, 51(1): 71-90, https://doi.org/10.1034/j.1600-0889.1999.00007.x.
Philander S G H, Hurlin W J, Seigel A D. 1987. Simulation of the seasonal cycle of the tropical Pacific Ocean. Journal of Physical Oceanography, 17(11): 1 986-2 002, https://doi.org/10.1175/1520-0485(1987)017<1986:SOTSCO>2.0.CO;2.
Philander S G H, Seigel A D. 1985. Simulation of El Niño of 1982-1983. In: Nihoul J C J ed. Coupled OceanAtmospheric Models. Elsevier, New York. p.517-541.
Picaut J, Masia F, du Penhoat Y. 1997. An advective-reflective conceptual model for the oscillatory nature of the ENSO.Science, 277(5326): 663-666, https://doi.org/10.1126/science.277.5326.663.
Qiao F L, Song Z Y, Bao Y, Song Y J, Shu Q, Huang C J, Zhao W. 2013. Development and evaluation of an Earth System Model with surface gravity waves. Journal of Geophysical Research: Oceans, 118(9): 4 514-4 524, https://doi.org/10.1002/jgrc.20327.
Qiao F L, Yuan Y L, Yang Y Z, Zheng Q A, Xia C S, Ma J. 2004. Wave-induced mixing in the upper ocean:distribution and application to a global ocean circulation model. Geophysical Research Letters, 31(11): L11303, https://doi.org/10.1029/2004GL019824.
Qiao F L, Zhao W, Yin X Q, Huang X M, Liu X, Shu Q, Wang G S, Song Z Y, Li X F, Liu H X, Yang G W, Yuan Y L. 2016. A highly effective global surface wave numerical simulation with ultra-high resolution. In: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis. IEEE, Salt Lake City, UT, USA. p.46-56, https://doi.org/10.1109/SC.2016.4.
Rasmusson E M, Carpenter T H. 1982. Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Monthly Weather Review, 110(5): 354-384, https://doi.org/10.1175/1520-0493(1982)110<0354:VITSST>2.0.CO;2.
Ren H L, Jin F F, Song L C, Lu B, Tian B, Zuo J Q, Liu Y, Wu J, Zhao C B, Nie Y, Zhang P Q, Ba J, Wu Y J, Wan J H, Yan Y P, Zhou F. 2017. Prediction of primary climate variability modes at the Beijing Climate Center. Journal of Meteorological Research, 31(1): 204-223, https://doi.org/10.1007/s13351-017-6097-3.
Ren H L, Liu Y, Zuo J Q, Lu B, Tian B, Jin F F, Wan J H. 2016. The new generation of ENSO prediction system in Beijing Climate Centre and its predictions for the 2014/2016 super El Niño event. Meteorological Monthly, 42(5): 521-531, https://doi.org/10.7519/j.issn.1000-0526.2016.05.001. (in Chinese with English abstract)
Ren H L, Wu Y J, Bao Q, Ma J H, Liu C Z, Wan J H, Li Q P, Wu X F, Liu Y, Tian B, Fu J X, Sun J Q. 2019. The China multi-model ensemble prediction system and its application to flood-season prediction in 2018. Journal of Meteorological Research, 33(3): 540-552, https://doi.org/10.1007/s13351-019-8154-6.
Ren H L, Zheng F, Luo J J, Wang R, Liu M H, Zhang W J, Zhou T J, Zhou G Q. 2020. A review of research on tropical air-sea interaction, ENSO dynamics, and ENSO prediction in China. Journal of Meteorological Research, 34(1): 43-62, https://doi.org/10.1007/s13351-020-9155-1.
Roeckner E, Bäuml G, Bonaventura L, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kirchner I, Kornblueh L, Manzini E, Rhodin A, Schlese U, Schulzweida U, Tompkins A. 2003. The atmospheric general circulation model ECHAM 5. Part I: model description. Max Planck Institute for Meteorology Report 349, 127p.
Rosati A, Miyakoda K. 1988. A general circulation model for upper ocean simulation. Journal of Physical Oceanography, 18(11): 1 601-1 626, https://doi.org/10.1175/1520-0485(1988)018<1601:agcmfu>2.0.co;2.
Semtner A J Jr, Chervin R M. 1992. Ocean general circulation from a global eddy-resolving model. Journal of Geophysical Research: Oceans, 97(C4): 5 493-5 550, https://doi.org/10.1029/92JC00095.
Song X S, Chen D K, Tang Y M, Liu T. 2018. An intermediate coupled model for the tropical ocean-atmosphere system.Science China Earth Sciences, 61(12): 1 859-1 874, https://doi.org/10.1007/s11430-018-9274-6.
Song Z Y, Bao Y, Qiao F L. 2019. Introduction of FIO-ESM v2.0 and its participation plan in CMIP6 experiments.Climate Change Research, 15(5): 558-565, https://doi.org/10.12006/j.issn.1673-1719.2019.033. (in Chinese with English abstract)
Song Z Y, Liu H L, Wang C Z, Zhang L P, Qiao F L. 2014.Evaluation of the eastern equatorial Pacific SST seasonal cycle in CMIP5 models. Ocean Science, 10(5): 837-843, https://doi.org/10.5194/os-10-837-2014.
Song Z Y, Qiao F L, Song Y J. 2012. Response of the equatorial basin-wide SST to non-breaking surface wave-induced mixing in a climate model: an amendment to tropical bias.Journal of Geophysical Research: Oceans, 117(C11):C00J26, https://doi.org/10.1029/2012JC007931.
Song Z Y, Shu Q, Bao Y, Yin X Q, Qiao F L. 2015. The prediction on the 2015/16 El Niño event from the perspective of FIOESM. Acta Oceanologica Sinica, 34(12): 67-71, https://doi.org/10.1007/s13131-015-0787-4.
Stockdale T N, Busalacchi A J, Harrison D E, Seager R. 1998.Ocean modeling for ENSO. Journal of Geophysical Research: Oceans, 103(C7): 14 325-14 355, https://doi.org/10.1029/97JC02440.
Suarez M J, Schopf P S. 1988. A delayed action oscillator for ENSO. Journal of the Atmospheric Sciences, 45(21):3 283-3 287, https://doi.org/10.1175/1520-0469(1988)045< 3283:adaofe>2.0.co;2.
Syu H H, Neelin J D, Gutzler D. 1995. Seasonal and interannual variability in a hybrid coupled GCM. Journal of Climate, 8(9): 2 121-2 143, https://doi.org/10.1175/1520-0442(1995)008<2121:saivia>2.0.co;2
Tan X X, Tang Y M, Lian T, Yao Z X, Li X J, Chen D K. 2020.A study of the effects of westerly wind bursts on ENSO based on CESM. Climate Dynamics, 54(1): 885-899, https://doi.org/10.1007/s00382-019-05034-2.
Tang Y. 2002. Hybrid coupled models of the tropical Pacific, I:interannual variability. Climate Dynamics, 19(3-4): 331-342, https://doi.org/10.1007/s00382-002-0230-3.
Tang Y M, Deng Z W, Zhou X B, Cheng Y J, Chen D K. 2008.Interdecadal variation of ENSO predictability in multiple models. Journal of Climate, 21(18): 4 811-4 833, https://doi.org/10.1175/2008JCLI2193.1.
Tang Y M, Zhang R H, Liu T, Duan W S, Yang D J, Zheng F, Ren H L, Lian T, Gao C, Chen D K, Mu M. 2018. Progress in ENSO prediction and predictability study. National Science Review, 5(6): 826-839, https://doi.org/10.1093/nsr/nwy105.
Tao L J, Duan W S. 2019. Using a nonlinear forcing singular vector approach to reduce model error effects in ENSO forecasting. Weather and Forecasting, 34(5): 1 321-1 342, https://doi.org/10.1175/WAF-D-19-0050.1.
Tao L J, Gao C, Zhang R H. 2018. ENSO predictions in an intermediate coupled model influenced by removing initial condition errors in sensitive areas: a target observation perspective. Advances in Atmospheric Sciences, 35(7):853-867, https://doi.org/10.1007/s00376-017-7138-7.
Taylor K E, Stouffer R J, Meehl G A. 2012. An overview of CMIP5 and the experiment design. Bulletin of the American Meteorological Society, 93(4): 485-498, https://doi.org/10.1175/BAMS-D-11-00094.1.
Tian B, Ren H L, Jin F F, Stuecker M F. 2019. Diagnosing the representation and causes of the ENSO persistence barrier in CMIP5 simulations. Climate Dynamics, 53(3-4): 2 147-2 160, https://doi.org/10.1007/s00382-019-04810-4.
Tian F, Zhang R H, Wang X J. 2018. A coupled ocean physicsbiology modeling study for tropical instability waveinduced chlorophyll impacts in the Pacific. Journal of Geophysical Research: Oceans, 123(8): 5 160-5 179, https://doi.org/10.1029/2018jc013992.
Timmermann A, An S I, Kug J S, Jin F F, Cai W J, Capotondi A, Cobb K M, Lengaigne M, McPhaden M J, Stuecker M F, Stein K, Wittenberg A T, Yun K S, Bayr T, Chen H C, Chikamoto Y, Dewitte B, Dommenget D, Grothe P, Guilyardi E, Ham Y G, Hayashi M, Ineson S, Kang D, Kim S, Kim W, Lee J Y, Li T, Luo J J, McGregor S, Planton Y, Power S, Rashid H, Ren H L, Santoso A, Takahashi K, Todd A, Wang G M, Wang G J, Xie R H, Yang W H, Yeh S W, Yoon J, Zeller E, Zhang X B. 2018. El Niño-Southern Oscillation complexity. Nature, 559(7715): 535-545, https://doi.org/10.1038/s41586-018-0252-6.
Trenberth K E, Branstator G W, Karoly D, Kumar A, Lau N C, Ropelewski C. 1998. Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. Journal of Geophysical Research, 103(C7): 14 291-14 324, https://doi.org/10.1029/97JC01444.
Wallace J M, Rasmusson E M, Mitchell T P, Kousky V E, Sarachik E S, von Storch H. 1998. On the structure and evolution of ENSO-related climate variability in the tropical Pacific: lessons from TOGA. Journal of Geophysical Research, 103(C7): 14 241-14 259, https://doi.org/10.1029/97jc02905.
Wang B, Wan H, Ji Z Z, Zhang X, Yu R C, Yu Y Q, Liu H T. 2004. Design of a new dynamical core for global atmospheric models based on some efficient numerical methods. Science China Mathematics, 47(S1): 4-21, https://doi.org/10.1360/04za0001.
Wang C Z. 2018. A review of ENSO theories. National Science Review, 5(6): 813-825, https://doi.org/10.1093/nsr/nwy104.
Wang L, Ren H L, Zhu J S, Huang B H. 2020. Improving prediction of two ENSO types using a multi-model ensemble based on stepwise pattern projection model.Climate Dynamics, 54(7-8): 3 229-3 243, https://doi.org/10.1007/s00382-020-05160-2.
Webster P J, Yang S. 1992. Monsoon and ENSO: Selectively interactive systems. Quarterly Journal of the Royal Meteorological Society, 118(507): 877-926, https://doi.org/10.1002/qj.49711850705.
Weisberg R H, Wang C Z. 1997. A western Pacific oscillator paradigm for the El Niño-Southern Oscillation.Geophysical Research Letters, 24(7): 779-782, https://doi.org/10.1029/97GL00689.
Wu T, Lu Y X, Fang Y J, Xin X G, Li L, Li W P, Jie W H, Zhang J, Liu Y M, Zhang L, Zhang F, Zhang Y W, Wu F H, Li J L, Chu M, Wang Z Z, Shi X L, Liu X W, Wei M, Huang A N, Zhang Y C, Liu X H. 2019. The Beijing Climate Center Climate System Model (BCC-CSM): the main progress from CMIP5 to CMIP6. Geoscientific Model Development, 12(4): 1 573-1 600, https://doi.org/10.5194/gmd-12-1573-2019.
Wu T, Song L C, Li W P, Wang Z Z, Zhang H, Xin X G, Zhang Y W, Zhang L, Li J L, Wu F H, Liu Y M, Zhang F, Shi X L, Chu M, Zhang J, Fang Y J, Wang F, Lu Y X, Liu X W, Wei M, Liu Q X, Zhou W Y, Dong M, Zhao Q G, Ji J J, Li L, Zhou M Y. 2014. An overview of BCC climate system model development and application for climate change studies. Journal of Meteorological Research, 28(1): 34-56, https://doi.org/10.1007/s13351-014-3041-7.
Wu T, Yu R C, Zhang F, Wang Z Z, Dong M, Wang L N, Jin X, Chen D L, Li L. 2010. The Beijing Climate Center atmospheric general circulation model: description and its performance for the present-day climate. Climate Dynamics, 34(1): 123-147, https://doi.org/10.1007/s00382-008-0487-2.
Wyrtki K. 1975. El Niño-The dynamic response of the equatorial Pacific Ocean to atmospheric forcing. Journal of Physical Oceanography, 5(4): 572-584, https://doi.org/10.1175/1520-0485(1975)005<0572:ENTDRO>2.0.CO;2.
Xie S P, Peng Q H, Kamae Y, Zheng X T, Tokinaga H, Wang D X. 2018. Eastern Pacific ITCZ dipole and ENSO diversity.Journal of Climate, 31(11): 4 449-4 462, https://doi.org/10.1175/jcli-d-17-0905.1.
Copyright © Haiyang Xuebao