Cite this paper:
WANG Xiutong, XU Hui, NAN Youbo, SUN Xin, DUAN Jizhou, HUANG Yanliang, HOU Baorong. Research progress of TiO2 photocathodic protection to metals in marine environment[J]. Journal of Oceanology and Limnology, 2020, 38(4): 1018-1044

Research progress of TiO2 photocathodic protection to metals in marine environment

WANG Xiutong1,2,3,4, XU Hui1,2,3, NAN Youbo1,2,3, SUN Xin1,2,3, DUAN Jizhou1,2,4, HUANG Yanliang1,2,4, HOU Baorong1,2,4
1 Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China;
2 Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China;
3 University of Chinese Academy of Sciences, Beijing 100049, China;
4 Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
Abstract:
Corrosion protection has become an important issue as the amount of infrastructure construction in marine environment increased. Photocathodic protection is a promising method to reduce the corrosion of metals, and titanium dioxide (TiO2) is the most widely used photoanode. This review summarizes the progress in TiO2 photogenerated protection in recent years. Different types of semiconductors, including sulfides, metals, metal oxides, polymers, and other materials, are used to design and modify TiO2. The strategy to dramatically improve the efficiency of photoactivity is proposed, and the mechanism is investigated in detail. Characterization methods are also introduced, including morphology testing, light absorption, photoelectrochemistry, and protected metal observation. This review aims to provide a comprehensive overview of TiO2 development and guide photocathodic protection.
Key words:    photocathodic protection|corrosion|titanium dioxide (TiO2)|photoelectrochemistry|metal   
Received: 2020-03-03   Revised: 2020-04-02
Tools
PDF (18224 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by WANG Xiutong
Articles by XU Hui
Articles by NAN Youbo
Articles by SUN Xin
Articles by DUAN Jizhou
Articles by HUANG Yanliang
Articles by HOU Baorong
References:
Balaur E, Macak J M, Taveira L, Schmuki P. 2005. Tailoring the wettability of TiO2 nanotube layers. Electrochemistry Communications, 7(10): 1 066-1 070, https://doi.org/10.1016/j.elecom.2005.07.014.
Bamoulid L, Maurette M T, De Caro D, Guenbour A, Ben Bachir A, Aries L, El Hajjaji S, Benoît-Marquié F, Ansart F. 2008. An efficient protection of stainless steel against corrosion: combination of a conversion layer and titanium dioxide deposit. Surface and Coatings Technology, 202(20): 5 020-5 026, https://doi.org/10.1016/j.surfcoat.2008.05.011.
Boonserm A, Kruehong C, Seithtanabutara V, Artnaseaw A, Kwakhong P. 2017. Photoelectrochemical response and corrosion behavior of CdS/TiO2 nanocomposite films in an aerated 0.5 M NaCl solution. Applied Surface Science, 419: 933-941, https://doi.org/10.1016/j.apsusc.2017.05.093.
Boukerche S, Himour A, Bououdina M, Bensouici F, Ouchenane S. 2019. Multilayered ZnO/TiO2 nanostructures as efficient corrosion protection for stainless steel 304. Materials Research Express, 6(5):055052, https://doi.org/10.1088/2053-1591/ab042f.
Bu Y Y, Chen Z Y, Ao J P, Hou J, Sun M X. 2018. Study of the photoelectrochemical cathodic protection mechanism for steel based on the SrTiO3-TiO2 composite. Journal of Alloys and Compounds, 731: 1 214-1 224, https://doi.org/10.1016/j.jallcom.2017.10.165.
Bu Y Y, Chen Z Y, Yu J Q, Li W B. 2013. A novel application of g-C3N4 thin film in photoelectrochemical anticorrosion.Electrochimica Acta, 88: 294-300, https://doi.org/10.1016/j.electacta.2012.10.049.
Bu Y Y, Li W B, Yu J Q, Wang X T, Qi M L, Nie M Y, Hou B R. 2011. Fabrication of SrTiO3 nanocrystalline film photoelectrode and its photoelectrochemical anticorrosion properties for stainless steel. Acta Physico-Chimica Sinica, 27(10): 2 393-2 399, https://doi.org/10.3866/PKU.WHXB20110926. (in Chinese with English abstract)
Cai J S, Shen J L, Zhang X N, Ng Y H, Huang J Y, Guo W X, Lin C J, Lai Y K. 2019. Light-driven sustainable hydrogen production utilizing TiO2 nanostructures: a review. Small Methods, 3(1): 1800184, https://doi.org/10.1002/smtd.201800184.
Chen J S, Tan Y L, Li C M, Cheah Y L, Luan D Y, Madhavi S, Boey F Y C, Archer L A, Lou X W. 2010. Constructing hierarchical spheres from large ultrathin anatase TiO2 Nanosheets with nearly 100% exposed (001) facets for fast reversible lithium storage. Journal of the American Chemical Society, 132(17): 6 124-6 130, https://doi.org/10.1021/ja100102y.
Chen X B, Li C, Grätzel M, Kostecki R, Mao S S. 2012.Nanomaterials for renewable energy production and storage. Chemical Society Reviews, 41(23): 7 909-7 937, https://doi.org/10.1039/c2cs35230c.
Chen Z H, Yang W Z, Xu B, Chen Y, Qian M Q, Su X, Li Z H, Yin X S, Liu Y. 2019. Corrosion protection of carbon steels by electrochemically synthesized V-TiO2/polypyrrole composite coatings in 0.1 M HCl solution.Journal of Alloys and Compounds, 771: 857-868, https://doi.org/10.1016/j.jallcom.2018.09.003.
Cheng W H, Li C D, Ma X, Yu L M, Liu G Y. 2017. Effect of SiO2-doping on photogenerated cathodic protection of nano-TiO2 films on 304 stainless steel. Materials & Design, 126: 155-161, https://doi.org/10.1016/j.matdes.2017.04.041.
Cui J, Pei Y S. 2019. Enhanced photocathodic protection performance of Fe2O3/TiO2 heterojunction for carbon steel under simulated solar light. Journal of Alloys and Compounds, 779: 183-192, https://doi.org/10.1016/j.jallcom.2018.11.281.
Cui S W, Yin X Y, Yu Q L, Liu Y P, Wang D A, Zhou F. 2015.Polypyrrole nanowire/TiO2 nanotube nanocomposites as photoanodes for photocathodic protection of Ti substrate and 304 stainless steel under visible light. Corrosion Science, 98: 471-477, https://doi.org/10.1016/j.corsci.2015.05.059.
Davy H. 1824. On the corrosion of copper sheeting by sea water, and on methods of preventing this effect, and on their application to ships of war and other ships.Philosophical Transactions, 114: 151-158, https://doi.org/10.1098/rstl.1824.0009.
Deng H D, Huang M C, Weng W H, Lin J C. 2015.Photocathodic protection of iron oxide nanotube arrays fabricated on carbon steel. Surface and Coatings Technology, 266: 183-187, https://doi.org/10.1016/j.surfcoat.2015.02.042.
Ding D, Hou Q K, Su Y G, Li Q Q, Liu L, Jing J, Lin B, Chen Y. 2019. g-C3N4/TiO2 hybrid film on the metal surface, a cheap and efficient sunlight active photoelectrochemical anticorrosion coating. Journal of Materials Science:Materials in Electronics, 30(13): 12 710-12 717, https://doi.org/10.1007/s10854-019-01635-z.
Feng Y G, Zheng Y B, Rahman Z U, Wang D A, Zhou F, Liu W M. 2016. Paper-based triboelectric nanogenerators and their application in self-powered anticorrosion and antifouling. Journal of Materials Chemistry A, 4(46):18 022-18 030, https://doi.org/10.1039/c6ta07288g.
Fujishima A, Honda K. 1972. Electrochemical photolysis of water at a semiconductor electrode. Nature, 238(5358):37-38, https://doi.org/10.1038/238037a0.
Fujishima A, Zhang X T, Tryk D A. 2008. TiO2 photocatalysis and related surface phenomena. Surface Science Reports, 63(12): 515-582, https://doi.org/10.1016/j.surfrep.2008.10.001.
Ge S S, Zhang Q X, Wang X T, Li H, Zhang L, Wei Q Y. 2015.Photocathodic protection of 304 stainless steel by MnS/TiO2 nanotube films under simulated solar light. Surface and Coatings Technology, 283: 172-176, https://doi.org/10.1016/j.surfcoat.2015.10.061.
Guan G J, Han M Y. 2019. Functionalized hybridization of 2D nanomaterials. Advanced Science, 6(23): 1901837, https://doi.org/10.1002/advs.201901837.
Guan Z C, Jin P, Liu Q, Wang X, Chen L F, Xu H, Song G L, Du R G. 2019. Carbon quantum dots/Ag sensitized TiO2 nanotube film for applications in photocathodic protection.Journal of Alloys and Compounds, 797: 912-921, https://doi.org/10.1016/j.jallcom.2019.05.199.
Guan Z C, Wang H P, Wang X, Hu J, Du R G. 2018a.Fabrication of heterostructured β-Bi2O3-TiO2 nanotube array composite film for photoelectrochemical cathodic protection applications. Corrosion Science, 136: 60-69, https://doi.org/10.1016/j.corsci.2018.02.048.
Guan Z C, Wang X, Jin P, Tang Y Y, Wang H P, Song G L, Du R G. 2018b. Enhanced photoelectrochemical performances of ZnS-Bi2S3/TiO2/WO3 composite film for photocathodic protection. Corrosion Science, 143: 31-38, https://doi.org/10.1016/j.corsci.2018.07.037.
Guo Q, Zhou C Y, Ma Z B, Yang X M. 2019. Fundamentals of TiO2 photocatalysis: concepts, mechanisms, and challenges. Advanced Materials, 31(50): 1901997, https://doi.org/10.1002/adma.201901997.
Hou B R, Li X G, Ma X M, Du C W, Zhang D W, Zheng M, Xu W C, Lu D Z, Ma F B. 2017. The cost of corrosion in China. npj Materials Degradation, 1(1): 4, https://doi.org/10.1038/s41529-017-0005-2.
Hou B R. 2019. Introduction to a study on corrosion status and control strategies in China. In: Hou B R ed. The Cost of Corrosion in China. Springer, Singapore. p.1-33, https://doi.org/10.1007/978-981-32-9354-0_1.
Hu J, Guan Z C, Liang Y, Zhou J Z, Liu Q, Wang H P, Zhang H, Du R G. 2017. Bi2S3 modified single crystalline rutile TiO2 nanorod array films for photoelectrochemical cathodic protection. Corrosion Science, 125: 59-67, https://doi.org/10.1016/j.corsci.2017.06.003.
Hu J, Liu Q, Zhang H, Chen C D, Liang Y, Du R G, Lin C J. 2015a. Facile ultrasonic deposition of SnO2 nanoparticles on TiO2 nanotube films for enhanced photoelectrochemical performances. Journal of Materials Chemistry A, 3(45):22 605-22 613, https://doi.org/10.1039/c5ta06752a.
Hu J, Zhu Y F, Liu Q, Gao Y B, Du R G, Lin C J. 2015b. SnO2 nanoparticle films prepared by pulse current deposition for photocathodic protection of stainless steel. Journal of the Electrochemical Society, 162(4): C161-C166, https://doi.org/10.1149/2.0451504jes.
Huang J S, Shinohara T, Tsujikawa S. 2000. Photoeffect on corrosion behavior of SrTiO3-coated galvanized steel.Zairyo-to-Kankyo, 49(10): 625-631, https://doi.org/10.3323/jcorr1991.49.625.
Jing J P, Chen Z Y, Bu Y Y, Xu L K. 2016. Photoelectrochemical cathodic protection induced from nanoflower-structured WO3 sensitized with CdS nanoparticles. Journal of the Electrochemical Society, 163(14): C928-C936, https://doi.org/10.1149/2.0141702jes.
Kudo A, Miseki Y. 2009. Heterogeneous photocatalyst materials for water splitting. Chemical Society Reviews, 38(1): 253-278, https://doi.org/10.1039/b800489g.
Lan K, Liu Y, Zhang W, Liu Y, Elzatahry A, Wang R C, Xia Y Y, Al-Dhayan D, Zheng N F, Zhao D Y. 2018. Uniform ordered two-dimensional mesoporous TiO2 nanosheets from hydrothermal-induced solvent-confined monomicelle assembly. Journal of the American Chemical Society, 140(11): 4 135-4 143, https://doi.org/10.1021/jacs.8b00909.
Lei C X, Liu Y, Zhou H, Feng Z D, Du R G. 2013.Photogenerated cathodic protection of stainless steel by liquid-phase-deposited sodium polyacrylate/TiO2 hybrid films. Corrosion Science, 68: 214-222, https://doi.org/10.1016/j.corsci.2012.11.019.
Lei C X, Zhou H, Feng Z D, Zhu Y F, Du R G. 2012. Liquid phase deposition (LPD) of TiO2 thin films as photoanodes for cathodic protection of stainless steel. Journal of Alloys and Compounds, 513: 552-558, https://doi.org/10.1016/j.jallcom.2011.11.005.
Lenz D M, Delamar M, Ferreira C A. 2003. Application of polypyrrole/TiO2 composite films as corrosion protection of mild steel. Journal of Electroanalytical Chemistry, 540: 35-44, https://doi.org/10.1016/s0022-0728(02)01272-x.
Li H, Li Y H, Wang M, Niu Z, Wang X T, Hou B R. 2018a.Preparation and photocathodic protection property of ZnIn2S4/RGO/TiO2 composites for Q235 carbon steel under visible light. Nanotechnology, 29(43): 435706, https://doi.org/10.1088/1361-6528/aada28.
Li H, Li Y H, Wang X T, Hou B R. 2019.3D ZnIn2S4 nanosheets/TiO2 nanotubes as photoanodes for photocathodic protection of Q235 CS with high efficiency under visible light. Journal of Alloys and Compounds, 771: 892-899, https://doi.org/10.1016/j.jallcom.2018.09.027.
Li H, Wang X T, Liu Y, Hou B R. 2014. Ag and SnO2 cosensitized TiO2 photoanodes for protection of 304SS under visible light. Corrosion Science, 82: 145-153, https://doi.org/10.1016/j.corsci.2014.01.009.
Li H, Wang X T, Wei Q Y, Hou B R. 2017a. Photocathodic protection of 304 stainless steel by Bi2S3/TiO2 nanotube films under visible light. Nanoscale Research Letters, 12(1): 80, https://doi.org/10.1186/s11671-017-1863-9.
Li H, Wang X T, Wei Q Y, Liu X Q, Qian Z H, Hou B R. 2017b.Enhanced photocathodic protection performance of Ag/graphene/TiO2 composite for 304SS under visible light.Nanotechnology, 28(22): 225701, https://doi.org/10.1088/1361-6528/aa6e5d.
Li H, Wang X T, Zhang L, Hou B R. 2015a. CdTe and graphene co-sensitized TiO2 nanotube array photoanodes for protection of 304SS under visible light. Nanotechnology, 26(15): 155704, https://doi.org/10.1088/0957-4484/26/15/155704.
Li H, Wang X T, Zhang L, Hou B R. 2015b. Preparation and photocathodic protection performance of CdSe/reduced graphene oxide/TiO2 composite. Corrosion Science, 94:342-349, https://doi.org/10.1016/j.corsci.2015.02.017.
Li J T, Wu N Q. 2015. Semiconductor-based photocatalysts and photoelectrochemical cells for solar fuel generation: a review. Catalysis Science & Technology, 5(3): 1 360-1 384, https://doi.org/10.1039/c4cy00974f.
Li J, Lin C J, Lai Y K, Du R G. 2010. Photogenerated cathodic protection of flower-like, nanostructured, N-doped TiO2 film on stainless steel. Surface and Coatings Technology, 205(2): 557-564, https://doi.org/10.1016/j.surfcoat.2010.07.030.
Li J, Lin C J, Li J T, Lin Z Q. 2011. A photoelectrochemical study of CdS modified TiO2 nanotube arrays as photoanodes for cathodic protection of stainless steel.Thin Solid Films, 519(16): 5 494-5 502, https://doi.org/10.1016/j.tsf.2011.03.116.
Li J, Yun H, Lin C J. 2007. The Fe-doped TiO2 nanotube arrays as a photoanode for cathodic protection of stainless steel.Acta Physico-Chimica Sinica, 23(12): 1 886-1 892, https://doi.org/10.3866/pku.Whxb20071211. (in Chinese with English abstract)
Li S N, Fu J J. 2013. Improvement in corrosion protection properties of TiO2 coatings by chromium doping.Corrosion Science, 68: 101-110, https://doi.org/10.1016/j.corsci.2012.10.040.
Li S N, Wang Q, Chen T, Zhou Z H, Wang Y, Fu J J. 2012.Study on cerium-doped nano-TiO2 coatings for corrosion protection of 316 L stainless steel. Nanoscale Research Letters, 7(1): 227, https://doi.org/10.1186/1556-276x-7-227.
Li X R, Wang X T, Ning X B, Lei J, Shao J, Wang W C, Huang Y L, Hou B R. 2018b. Sb2S3/Sb2O3 modified TiO2 photoanode for photocathodic protection of 304 stainless steel under visible light. Applied Surface Science, 462:155-163, https://doi.org/10.1016/j.apsusc.2018.08.108.
Liang Y, Guan Z C, Wang H P, Du R G. 2017. Enhanced photoelectrochemical anticorrosion performance of WO3/TiO2 nanotube composite films formed by anodization and electrodeposition. Electrochemistry Communications, 77: 120-123, https://doi.org/10.1016/j.elecom.2017.03.008.
Lin Z Q, Lai Y K, Hu R G, Li J, Du R G, Lin C J. 2010. A highly efficient ZnS/CdS@TiO2 photoelectrode for photogenerated cathodic protection of metals.Electrochimica Acta, 55(28): 8 717-8 723, https://doi.org/10.1016/j.electacta.2010.08.017.
Linsebigler A L, Lu G Q, Yates J T. 1995. Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chemical Reviews, 95(3): 735-758, https://doi.org/10.1021/cr00035a013.
Liu L, Hu J M, Leng W H, Zhang J Q, Cao C N. 2007. Novel bis-silane/TiO2 bifunctional hybrid films for metal corrosion protection both under ultraviolet irradiation and in the dark. Scripta Materialia, 57(6): 549-552, https://doi.org/10.1016/j.scriptamat.2007.04.044.
Liu W J, Du T, Ru Q X, Zuo S X, Cai Y H, Yao C. 2018.Preparation of graphene/WO3/TiO2 composite and its photocathodic protection performance for 304 stainless steel. Materials Research Bulletin, 102: 399-405, https://doi.org/10.1016/j.materresbull.2018.03.012.
Liu W J, Yin K C, He F, Ru Q X, Zuo S X, Yao C. 2019. A highly efficient reduced graphene oxide/SnO2/TiO2 composite as photoanode for photocathodic protection of 304 stainless steel. Materials Research Bulletin, 113:6-13, https://doi.org/10.1016/j.materresbull.2018.12.039.
Liu Y, Xu C, Feng Z D. 2014. Characteristics and anticorrosion performance of Fe-doped TiO2 films by liquid phase deposition method. Applied Surface Science, 314: 392-399, https://doi.org/10.1016/j.apsusc.2014.07.042.
Lu X Y, Liu L, Xie X, Cui Y, Oguzie E E, Wang F H. 2020.Synergetic effect of graphene and Co(OH)2 as cocatalysts of TiO2 nanotubes for enhanced photogenerated cathodic protection. Journal of Materials Science & Technology, 37: 55-63, https://doi.org/10.1016/j.jmst.2019.07.034.
Ma Z, Ma X M, Liu N Z, Wang X T, Wang L F, Hou B R. 2020.Study on the photocathodic protection of 304 stainless steel by Ag and In2S3 co-sensitized TiO2 composite.Applied Surface Science, 507: 145088, https://doi.org/10.1016/j.apsusc.2019.145088.
Mahmoud M G, Wang R G, Kato M, Nakasa K. 2005. Influence of ultraviolet light irradiation on corrosion behavior of weathering steel with and without TiO2-coating in 3 mass% NaCl solution. Scripta Materialia, 53(11): 1 303-1 308, https://doi.org/10.1016/j.scriptamat.2005.07.039.
Matsunaga T, Tomoda R, Nakajima T, Nakamura N, Komine T. 1988. Continuous-sterilization system that uses photosemiconductor powders. Applied and Environmental Microbiology, 54(6): 1 330-1 333.
Melchers R E. 2003. Modeling of marine immersion corrosion for mild and low-alloy steels-Part 1: phenomenological model. Corrosion, 59(4): 319-334, https://doi.org/10.5006/1.3277564.
Momeni M M, Ghayeb Y, Moosavi N. 2018. Preparation of Ni-Pt/Fe-TiO2 nanotube films for photoelectrochemical cathodic protection of 403 stainless steel. Nanotechnology, 29(42): 425701, https://doi.org/10.1088/1361-6528/aad5f5.
Muratore C, Voevodin A A, Glavin N R. 2019. Physical vapor deposition of 2D Van der Waals materials: a review. Thin Solid Films, 688: 137500, https://doi.org/10.1016/j.tsf.2019.137500.
Nagaveni K, Sivalingam G, Hegde M S, Madras G. 2004.Solar photocatalytic degradation of dyes: high activity of combustion synthesized nano TiO2. Applied Catalysis B:Environmental, 48(2): 83-93, https://doi.org/10.1016/j.apcatb.2003.09.013.
Nan Y B, Wang X T, Ning X B, Lei J, Guo S Y, Huang Y L, Duan J Z. 2019. Fabrication of Ni3S2/TiO2 photoanode material for 304 stainless steel photocathodic protection under visible light. Surface and Coatings Technology, 377: 124935, https://doi.org/10.1016/j.surfcoat.2019.124935.
Ning X B, Ge S S, Wang X T, Li H, Li X R, Liu X Q, Huang Y L. 2017. Preparation and photocathodic protection property of Ag2S-TiO2 composites. Journal of Alloys and Compounds, 719: 15-21, https://doi.org/10.1016/j.jallcom.2017.05.133.
Oh S H, Finõnes R R, Daraio C, Chen L H, Jin S. 2005. Growth of Nano-scale hydroxyapatite using chemically treated titanium oxide nanotubes. Biomaterials, 26(24): 4 938-4 943, https://doi.org/10.1016/j.biomaterials.2005.01.048.
Ohko Y, Saitoh S, Tatsuma T, Fujishima A. 2001.Photoelectrochemical anticorrosion and self-cleaning effects of a TiO2 coating for type 304 stainless steel.Journal of the Electrochemical Society, 148(1): B24-B28, https://doi.org/10.1149/1.1339030.
O'Regan B, Grätzel M. 1991. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 353(6346): 737-740, https://doi.org/10.1038/353737a0.
Paramasivam I, Jha H, Liu N, Schmuki P. 2012. A review of photocatalysis using self-organized TiO2 nanotubes and other ordered oxide nanostructures. Small, 8(20): 3 073-3 103, https://doi.org/10.1002/smll.201200564.
Park H, Kim K Y, Choi W. 2001. A novel photoelectrochemical method of metal corrosion prevention using a TiO2 solar panel. Chemical Communications, (3): 281-282, https://doi.org/10.1039/b008106j.
Park J H, Kim J S, Park J M. 2013. Electrophoretic deposition of nano-ceramics for the photo-generated cathodic corrosion protection of steel substrates. Surface and Coatings Technology, 236: 172-181, https://doi.org/10.1016/j.surfcoat.2013.09.044.
Ren J F, Qian B, Li J Z, Song Z W, Hao L, Shi J S. 2016.Highly efficient polypyrrole sensitized TiO2 nanotube films for photocathodic protection of Q235 carbon steel.Corrosion Science, 111: 596-601, https://doi.org/10.1016/j.corsci.2016.06.001.
Roy P, Berger S, Schmuki P. 2011. TiO2 nanotubes: synthesis and applications. Angewandte Chemie International Edition, 50(13): 2 904-2 939, https://doi.org/10.1002/anie.201001374.
Shao J, Zhang Z D, Wang X T, Zhao X D, Ning X B, Lei J, Li X R, Hou B R. 2018. Synthesis and photocathodic protection properties of nanostructured SnS/TiO2 composites. Journal of The Electrochemical Society, 165(10): H601-H606, https://doi.org/10.1149/2.0281810jes.
Shen G X, Chen Y C, Lin C J. 2005. Corrosion protection of 316 L stainless steel by a TiO2 nanoparticle coating prepared by sol-gel method. Thin Solid Films, 489(1-2):130-136, https://doi.org/10.1016/j.tsf.2005.05.016.
Subasri R, Deshpande S, Seal S, Shinohara T. 2006. Evaluation of the performance of TiO2-CeO2 bilayer coatings as photoanodes for corrosion protection of copper.Electrochemical and Solid State Letters, 9(1): B1-B4, https://doi.org/10.1149/1.2133723.
Subasri R, Shinohara T. 2003. Investigations on SnO2-TiO2 composite photoelectrodes for corrosion protection.Electrochemistry Communications, 5(10): 897-902, https://doi.org/10.1016/j.elecom.2003.08.016.
Sun M M, Chen Z Y, Bu Y Y, Yu J Q, Hou B R. 2014. Effect of ZnO on the corrosion of zinc, Q235 carbon steel and 304 stainless steel under white light illumination. Corrosion Science, 82: 77-84, https://doi.org/10.1016/j.corsci.2013.12.022.
Sun M M, Chen Z Y, Bu Y Y. 2015. Enhanced photoelectrochemical cathodic protection performance of the C3N4@In2O3 nanocomposite with quasi-shell-core structure under visible light. Journal of Alloys and Compounds, 618: 734-741, https://doi.org/10.1016/j.jallcom.2014.08.234.
Sun M M, Chen Z Y, Li J R, Hou J, Xu F L, Xu L K, Zeng R C. 2018a. Enhanced visible light-driven activity of TiO2 nanotube array photoanode co-sensitized by “green” AgInS2 photosensitizer and In2S3 buffer layer.Electrochimica Acta, 269: 429-440, https://doi.org/10.1016/j.electacta.2018.03.035.
Sun M M, Chen Z Y, Yu J Q. 2013. Highly efficient visible light induced photoelectrochemical anticorrosion for 304 SS by Ni-doped TiO2. Electrochimica Acta, 109: 13-19, https://doi.org/10.1016/j.electacta.2013.07.121.
Sun M M, Chen Z Y. 2015. Enhanced photoelectrochemical cathodic protection performance of the In2O3/TiO2 composite. Journal of the Electrochemical Society, 162(3): C96-C104, https://doi.org/10.1149/2.0381503jes.
Sun W X, Cui S W, Wei N, Chen S G, Liu Y P, Wang D A. 2018b. Hierarchical WO3/TiO2 nanotube nanocomposites for efficient photocathodic protection of 304 stainless steel under visible light. Journal of Alloys and Compounds, 749: 741-749, https://doi.org/10.1016/j.jallcom.2018.03.371.
Tatsuma T, Saitoh S, Ohko Y, Fujishima A. 2001. TiO2-WO3 photoelectrochemical anticorrosion system with an energy storage ability. Chemistry of Materials, 13(9):2 838-2 842, https://doi.org/10.1021/cm010024k.
Tong H, Ouyang S X, Bi Y P, Umezawa N, Oshikiri M, Ye J H. 2012. Nano-photocatalytic materials: possibilities and challenges. Advanced Materials, 24(2): 229-251, https://doi.org/10.1002/adma.201102752.
Tsutsumi Y, Nishikata A, Tsuru T. 2006. Monitoring of rusting of stainless steels in marine atmospheres using electrochemical impedance technique. Journal of the Electrochemical Society, 153(7): B278, https://doi.org/10.1149/1.2202110.
Tsutsumi Y, Nishikata A, Tsuru T. 2007. Pitting corrosion mechanism of Type 304 stainless steel under a droplet of chloride solutions. Corrosion Science, 49(3): 1 394-1 407, https://doi.org/10.1016/j.corsci.2006.08.016.
Wang R, Hashimoto K, Fujishima A, Chikuni M, Kojima E, Kitamura A, Shimohigoshi M, Watanabe T. 1998.Photogeneration of highly amphiphilic TiO2 surfaces.Advanced Materials, 10(2): 135-138, https://doi.org/10.1002/(sici)1521-4095(199801)10:2<135::aid-adma135>3.0.co;2-m.
Wang W C, Wang X T, Wang N, Ning X B, Li H, Lu D Z, Liu X J, Zhang Q C, Huang Y L. 2018a. Bi2Se3 sensitized TiO2 nanotube films for photogenerated cathodic protection of 304 stainless steel under visible light. Nanoscale Research Letters, 13(1): 295, https://doi.org/10.1186/s11671-018-2717-9.
Wang X T, Lei J, Shao Q, Li X R, Ning X B, Shao J, Duan J Z, Hou B R. 2019. Preparation of ZnWO4/TiO2 composite film and its photocathodic protection for 304 stainless steel under visible light. Nanotechnology, 30(4): 045710.http://doi.org/10.1088/1361-6528/aaef9c.
Wang X T, Ning X B, Shao Q, Ge S S, Fei Z Y, Lei J, Hou B R. 2018b. ZnFeAl-layered double hydroxides/TiO2 composites as photoanodes for photocathodic protection of 304 stainless steel. Scientific Reports, 8(1): 4 116, https://doi.org/10.1038/s41598-018-22572-7.
Wang X T, Wei Q Y, Li J R, Li H, Zhang Q X, Ge S S. 2016a.Preparation of NiSe2/TiO2 nanocomposite for photocathodic protection of stainless steel. Materials Letters, 185: 443-446, https://doi.org/10.1016/j.matlet.2016.09.052.
Wang X T, Wei Q Y, Zhang L, Sun H F, Li H, Zhang Q X. 2016b. CdTe/TiO2 nanocomposite material for photogenerated cathodic protection of 304 stainless steel.Materials Science and Engineering: B, 208: 22-28, https://doi.org/10.1016/j.mseb.2016.02.006.
Wei N, Liu Y, Zhang T T, Liang J, Wang D A. 2016.Hydrogenated TiO2 nanotube arrays with enhanced photoelectrochemical property for photocathodic protection under visible light. Materials Letters, 185: 81-84, https://doi.org/10.1016/j.matlet.2016.08.109.
Xie X, Liu L, Chen R Z, Liu G, Li Y, Wang F H. 2018. Longterm photoelectrochemical cathodic protection by Co(OH)2-modified TiO2 on 304 stainless steel in marine environment. Journal of the Electrochemical Society, 165(4): H3154-H3163, https://doi.org/10.1149/2.0221804jes.
Xie X, Liu L, Chen R Z, Liu G, Li Y, Wang F H. 2019. Design of new al photoanode composite for cathodic protection based on photocatalytic material and sacrificial anode.Journal of the Electrochemical Society, 166(5):H3215-H3222, https://doi.org/10.1149/2.0321905jes.
Xu D W, Yang M K, Liu Y, Zhu R, Lv X D, Zhang C, Liu B. 2020. Fabrication of an innovative designed TiO2 nanosheets/CdSe/polyaniline/graphene quaternary composite and its application as in-situ photocathodic protection coatings on 304SS. Journal of Alloys and Compounds, 822: 153685, https://doi.org/10.1016/j.jallcom.2020.153685.
Xu H M, Liu W, Cao L X, Su G, Duan R J. 2014. Preparation of porous TiO2/ZnO composite film and its photocathodic protection properties for 304 stainless steel. Applied Surface Science, 301: 508-514, https://doi.org/10.1016/j.apsusc.2014.02.114.
Xue J B, Gao J L, Shen Q Q, Li Q, Liu X G, Jia H S, Wu Y C. 2020. Performance of photocatalytic cathodic protection of 20 steel by α-Fe2O3/TiO2 system. Surface and Coatings Technology, 385: 125445, https://doi.org/10.1016/j.surfcoat.2020.125445.
Yang H G, Liu G, Qiao S Z, Sun C H, Jin Y G, Smith S C, Zou J, Cheng H M, Lu G Q. 2009. Solvothermal synthesis and photoreactivity of anatase TiO2 nanosheets with dominant{001} facets. Journal of the American Chemical Society, 131(11): 4 078-4 083, https://doi.org/10.1021/ja808790p.
Yang H M, Deng M M, Zeng Q X, Zhang X M, Hu J, Tang Q, Yang H K, Hu C G, Xi Y, Wang Z L. 2020. Polydirectional microvibration energy collection for self-powered multifunctional systems based on hybridized nanogenerators. ACS Nano, 14(3): 3 328-3 336, https://doi.org/10.1021/acsnano.9b08998.
Yang Y Y, Zhang W W, Xu Y, Sun H Q, Wang X M. 2019. Ag2S decorated TiO2 nanosheets grown on carbon fibers for photoelectrochemical protection of 304 stainless steel.Applied Surface Science, 494: 841-849, https://doi.org/10.1016/j.apsusc.2019.07.234.
Yang Y, Cheng Y F. 2018. One-step facile preparation of ZnO nanorods as high-performance photoanodes for photoelectrochemical cathodic protection. Electrochimica Acta, 276: 311-318, https://doi.org/10.1016/j.electacta. 2018.04.206.
Yu S Q, Ling Y H, Wang R G, Zhang J, Qin F, Zhang Z J. 2018.Constructing superhydrophobic WO3@TiO2 nanoflake surface beyond amorphous alloy against electrochemical corrosion on iron steel. Applied Surface Science, 436:527-535, https://doi.org/10.1016/j.apsusc.2017.11.211.
Yuan J N, Fujisawa R, Tsujikawa S. 1994. Photopotentials of copper coated with TiO2 by sol-gel method. Zairyo-toKankyo, 43(8): 433-440, https://doi.org/10.3323/jcorr1991.43.433.
Yuan J N, Tsujikawa S. 1995. Characterization of sol-gelderived TiO2 coatings and their photoeffects on copper substrates. Journal of the Electrochemical Society, 142(10): 3 444-3 450, https://doi.org/10.1149/1.2050002.
Zhang H M, Liu P R, Wang H J, Yu H, Zhang S Q, Zhu H Y, Peng F, Zhao H J. 2010. Facile formation of branched titanate nanotubes to grow a three-dimensional nanotubular network directly on a solid substrate.Langmuir, 26(3): 1 574-1 578, https://doi.org/10.1021/la9041869.
Zhang J, Hu J, Zhu Y F, Liu Q, Zhang H, Du R G, Lin C J. 2015a. Fabrication of CdTe/ZnS core/shell quantum dots sensitized TiO2 nanotube films for photocathodic protection of stainless steel. Corrosion Science, 99: 118-124, https://doi.org/10.1016/j.corsci.2015.06.029.
Zhang L, Wang X T, Liu F G, Sun H F, Li H, Wei Q Y, Hou B R. 2015b. Photogenerated cathodic protection of 304ss by ZnSe/TiO2 NTs under visible light. Materials Letters, 143: 116-119, https://doi.org/10.1016/j.matlet.2014.12.047.
Zhang T T, Liu Y P, Liang J, Wang D A. 2017a. Enhancement of photoelectrochemical and photocathodic protection properties of TiO2 nanotube arrays by simple surface UV treatment. Applied Surface Science, 394: 440-445, https://doi.org/10.1016/j.apsusc.2016.10.120.
Zhang W W, Guo H L, Sun H Q, Zeng R C. 2017b. Constructing ternary polyaniline-graphene-TiO2 hybrids with enhanced photoelectrochemical performance in photo-generated cathodic protection. Applied Surface Science, 410: 547-556, https://doi.org/10.1016/j.apsusc.2017.03.133.
Zhang Y, Bu Y Y, Yu J Q, Li P. 2013. Highly efficient photoelectrochemical performance of SrTiO3/TiO2 heterojunction nanotube array thin film. Journal of Nanoparticle Research, 15(6): 1 717, https://doi.org/10.1007/s11051-013-1717-z.
Zhou M J, Zeng Z O, Zhong L. 2009. Photogenerated cathode protection properties of nano-sized TiO2/WO3 coating. Corrosion Science, 51(6): 1 386-1 391, https://doi.org/10.1016/j.corsci.2009.03.024.
Zhou M J, Zhang N, Zhang L, Yan J H. 2012. Photocathodic protection properties of TiO2-V2O5 composite coatings. Materials and Corrosion-Werkstoffe Und Korrosion, 64(11): 996-1 000, https://doi.org/10.1002/maco.201106418.
Zhu Y F, Du R G, Chen W, Qi H Q, Lin C J. 2010. Photocathodic protection properties of three-dimensional titanate nanowire network films prepared by a combined sol-gel and hydrothermal method. Electrochemistry Communications, 12(11): 1 626-1 629, https://doi.org/10.1016/j.elecom.2010.09.011.
Zhu Y F, Liu Y W, Yang Z N. 2019. Highly efficient photoinduced cathodic protection of 403SS by the all-solidstate Z-scheme ZnS-CdS-Ag@TiO2 Nanoheterojunctions.International Journal of Electrochemical Science, 14:815-825, https://doi.org/10.20964/2019.01.74.
Zhu Y F, Xu L, Hu J, Zhang J, Du R G, Lin C J. 2014.Fabrication of heterostructured SrTiO3/TiO2 nanotube array films and their use in photocathodic protection of stainless steel. Electrochimica Acta, 121: 361-368, https://doi.org/10.1016/j.electacta.2013.12.178.
Zhu Y F, Zhang J, Xu L, Guo Y, Wang X P, Du R G, Lin C J. 2013. Fabrication and photoelectrochemical properties of ZnS/Au/TiO2 nanotube array films. Physical Chemistry Chemical Physics, 15(11): 4 041-4 048, https://doi.org/10.1039/c3cp43572e.
Zuo J, Wu H, Chen A J, Zhu J Q, Ye M D, Ma J D, Qi Z B. 2018. Shape-dependent photogenerated cathodic protection by hierarchically nanostructured TiO2 films.Applied Surface Science, 462: 142-148, https://doi.org/10.1016/j.apsusc.2018.07.143.
Copyright © Haiyang Xuebao