Cite this paper:
CAI Haoyuan, WANG Peng, ZHANG Dun. Smart anticorrosion coating based on stimuli-responsive micro/nanocontainer: a review[J]. Journal of Oceanology and Limnology, 2020, 38(4): 1045-1063

Smart anticorrosion coating based on stimuli-responsive micro/nanocontainer: a review

CAI Haoyuan1,2,3,4, WANG Peng1,3,4, ZHANG Dun1,3,4
1 CAS Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China;
3 Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China;
4 Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
Abstract:
Smart coating for corrosion protection of metal materials (steel, magnesium, aluminum and their alloys) has drawn great attention because of their capacity to prevent crack propagation in the protective coating by releasing functional molecules (healing agents or corrosion inhibitors) on demand from delivery vehicle, that is, micro/nanocontainer made up of a shell and core material or a coating layer, in a controllable manner. Herein, we summarize the recent achievements during the last 10 years in the field of the micro/nanocontainer with different types of stimuli-responsive properties, i.e., pH, electrochemical potential, redox, aggressive corrosive ions, heat, light, magnetic field, and mechanical impact, for smart anticorrosion coating. The state-of-the-art design and fabrication of micro/nanocontainer are emphasized with detailed examples.
Key words:    corrosion protection|micro/nanocontainer|stimuli-responsive|smart anticorrosion coating   
Received: 2020-02-16   Revised: 2020-04-16
Tools
PDF (3618 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by CAI Haoyuan
Articles by WANG Peng
Articles by ZHANG Dun
References:
Alibakhshi E, Ghasemi E, Mahdavian M, Ramezanzadeh B. 2017. A comparative study on corrosion inhibitive effect of nitrate and phosphate intercalated Zn-Al-layered double hydroxides (LDHs) nanocontainers incorporated into a hybrid silane layer and their effect on cathodic delamination of epoxy topcoat. Corrosion Science, 115:159-174, https://doi.org/10.1016/j.corsci.2016.12.001.
Amamoto Y, Kamada J, Otsuka H, Takahara A, Matyjaszewski K. 2011. Repeatable photoinduced self-healing of covalently cross-linked polymers through reshuffling of trithiocarbonate units. Angewandte Chemie International Edition, 50(7): 1 660-1 663, https://doi.org/10.1002/anie.201003888.
Andreeva D V, Fix D, Mohwald H, Shchukin D G. 2008.Buffering polyelectrolyte multilayers for active corrosion protection. Journal of Materials Chemistry, 18(15):1 738-1 740, https://doi.org/10.1039/b801314d.
Andreeva D V, Skorb E V, Shchukin D G. 2010. Layer-bylayer polyelectrolyte/inhibitor nanostructures for metal corrosion protection. ACS Applied Materials & Interfaces, 2(7): 1 954-1 962, https://doi.org/10.1021/am1002712.
Behl M, Razzaq M Y, Lendlein A. 2010. Multifunctional shape-memory polymers. Advanced Materials, 22(31):3 388-3 410, https://doi.org/10.1002/adma.200904447.
Bierwagen G, Brown R, Battocchi D, Hayes S. 2010. Active metal-based corrosion protective coating systems for aircraft requiring no-chromate pretreatment. Progress in Organic Coatings, 68(1-2): 48-61, https://doi.org/10.1016/j.porgcoat.2009.10.031.
Buchheit R G, Guan H, Mahajanam S, Wong F. 2003. Active corrosion protection and corrosion sensing in chromate-free organic coatings. Progress in Organic Coatings, 47(3-4):174-182, https://doi.org/10.1016/j.porgcoat.2003.08.003.
Cai H Y, Sun L, Wang Y M, Song T W, Bao M T, Yang X L. 2019a. Unprecedented efficient degradation of phenanthrene in water by intimately coupling novel ternary composite Mn3O4/MnO2-Ag3PO4 and functional bacteria under visible light irradiation. Chemical Engineering Journal, 369: 1 078-1 092, https://doi.org/10.1016/j.cej.2019.03.143.
Cai H Y, Wang P, Chen X T, Wang Y, Zhang D. 2020. Sulfide ions-induced release of biocides from a metal-phenolic supramolecular film fabricated on aluminum for inhibition of microbially influenced corrosion. Corrosion Science, 167: 108 534, https://doi.org/10.1016/j.corsci.2020.108534.
Cai H Y, Wang P, Zhang D. 2019b. pH-responsive linkagesenabled layer-by-layer assembled antibacterial and antiadhesive multilayer films with polyelectrolyte nanocapsules as biocide delivery vehicles. Journal of Drug Delivery Science and Technology, 54: 101 251, https://doi.org/10.1016/j.jddst.2019.101251.
Cai T T, Huo S G, Wang T, Sun W X, Tong Z. 2018. Selfhealable tough supramolecular hydrogels crosslinked by poly-cyclodextrin through host-guest interaction.Carbohydrate Polymers, 193: 54-61, https://doi.org/10.1016/j.carbpol.2018.03.039.
Capelossi V R, Poelman M, Recloux I, Hernandez R P B, de Melo H G, Olivier M G. 2014. Corrosion protection of clad 2024 aluminum alloy anodized in tartaric-sulfuric acid bath and protected with hybrid sol-gel coating.Electrochimica Acta, 124: 69-79, https://doi.org/10.1016/j.electacta.2013.09.004.
Caruso M M, Blaiszik B J, White S R, Sottos N R, Moore J S. 2008. Full recovery of fracture toughness using a nontoxic solvent-based self-healing system. Advanced Functional Materials, 18(13): 1 898-1 904, https://doi.org/10.1002/adfm.200800300.
Chang D F, Gao Y F, Wang L J, Liu G, Chen Y H, Wang T, Tao W, Mei L, Huang L Q, Zeng X W. 2016. Polydopaminebased surface modification of mesoporous silica nanoparticles as pH-sensitive drug delivery vehicles for cancer therapy. Journal of Colloid and Interface Science, 463: 279-287, https://doi.org/10.1016/j.jcis.2015.11.001.
Chen J M, Fang L, Xu Z Z, Lu C H. 2016. Self-healing epoxy coatings curing with varied ratios of diamine and monoamine triggered via near-infrared light. Progress in Organic Coatings, 101: 543-552, https://doi.org/10.1016/j.porgcoat.2016.09.020.
Chen J Y, Chen X B, Li J L, Tang B, Birbilis N, Wang X G. 2014. Electrosprayed PLGA smart containers for active anti-corrosion coating on magnesium alloy AMlite.Journal of Materials Chemistry A, 2(16): 5 738-5 743, https://doi.org/10.1039/c3ta14999d.
Chen J, Song Y W, Shan D Y, Han E H. 2013. Modifications of the hydrotalcite film on AZ31 Mg alloy by phytic acid: the effects on morphology, composition and corrosion resistance. Corrosion Science, 74: 130-138, https://doi.org/10.1016/j.corsci.2013.04.034.
Chen T, Chen R P, Jin Z, Liu J. 2015. Engineering hollow mesoporous silica nanocontainers with molecular switches for continuous self-healing anticorrosion coating. Journal of Materials Chemistry A, 3(18): 9 510-9 516, https://doi.org/10.1039/c5ta01188d.
Chen T, Fu J J. 2012. An intelligent anticorrosion coating based on pH-responsive supramolecular nanocontainers.Nanotechnology, 23(50): 505 705, https://doi.org/10.1088/0957-4484/23/50/505705.
Chen X T, Wang P, Zhang D. 2019. Designing a superhydrophobic surface for enhanced atmospheric corrosion resistance based on coalescence-induced droplet jumping behavior.ACS Applied Materials & Interfaces, 11(41): 38 276-38 284, https://doi.org/10.1021/acsami.9b11415.
Christodoulou C, Glass G, Webb J, Austin S, Goodier C. 2010.Assessing the long term benefits of impressed current cathodic protection. Corrosion Science, 52(8): 2 671-2 679, https://doi.org/10.1016/j.corsci.2010.04.018.
Clark W J, Ramsey J D, McCreery R L, McCreery R L, Frankel G S. 2002. A galvanic corrosion approach to investigating chromate effects on aluminum alloy 2024-T3. Journal of the Electrochemical Society, 149(5): B179-B185B, https://doi.org/10.1149/1.1469031.
Cui J, Li X Q, Pei Z Q, Pei Y S. 2019. A long-term stable and environmental friendly self-healing coating with polyaniline/sodium alginate microcapsule structure for corrosion protection of water-delivery pipelines. Chemical Engineering Journal, 358: 379-388, https://doi.org/10.1016/j.cej.2018.10.062.
Cui L Y, Gao S D, Li P P, Zeng R C, Zhang F, Li S Q, Han E H. 2017. Corrosion resistance of a self-healing micro-arc oxidation/polymethyltrimethoxysilane composite coating on magnesium alloy AZ31.Corrosion Science, 118: 84-95, https://doi.org/10.1016/j.corsci.2017.01.025.
Ding C D, Liu Y, Wang M D, Wang T, Fu J J. 2016. Selfhealing, superhydrophobic coating based on mechanized silica nanoparticles for reliable protection of magnesium alloys. Journal of Materials Chemistry A, 4(21): 8 041-8 052, https://doi.org/10.1039/c6ta02575g.
Ding C D, Xu J H, Tong L, Gong G C, Jiang W, Fu J J. 2017a.Design and fabrication of a novel stimulus-feedback anticorrosion coating featured by rapid self-healing functionality for the protection of magnesium alloy. ACS Applied Materials & Interfaces, 9(24): 21 034-21 047, https://doi.org/10.1021/acsami.7b06347.
Ding C D, Xu J H, Tong L, Gong G C, Jiang W, Fu J J. 2017b.Design and fabrication of a novel stimulus-feedback anticorrosion coating featured by rapid self-healing functionality for the protection of magnesium alloy. ACS Applied Materials & Interfaces, 9(24): 21 034-21 047, https://doi.org/10.1021/acsami.7b06347.
Dong Y H, Wang F, Zhou Q. 2014. Protective behaviors of 2-mercaptobenzothiazole intercalated Zn-Al-layered double hydroxide coating. Journal of Coatings Technology and Research, 11(5): 793-803, https://doi.org/10.1007/s11998-014-9568-9.
Dou W W, Wu J J, Gu T Y, Wang P, Zhang D. 2018. Preparation of super-hydrophobic micro-needle CuO surface as a barrier against marine atmospheric corrosion. Corrosion Science, 131: 156-163, https://doi.org/10.1016/j.corsci.2017.11.012.
Du Y J, Damron M, Tang G, Zheng H X, Chu C J, Osborne J H. 2001. Inorganic/organic hybrid coatings for aircraft aluminum alloy substrates. Progress in Organic Coatings, 41(4): 226-232, https://doi.org/10.1016/S0300-9440(01)00133-3.
Eklund G S. 1974. Initiation of pitting at sulfide inclusions in stainless steel. Journal of the Electrochemical Society, 121(4): 467-473, https://doi.org/10.1149/1.2401840.
Fan W J, Zhang Y, Li W H, Wang W, Zhao X D, Song L Y. 2019. Multi-level self-healing ability of shape memory polyurethane coating with microcapsules by induction heating. Chemical Engineering Journal, 368: 1 033-1 044, https://doi.org/10.1016/j.cej.2019.03.027.
Fang L, Chen J M, Zou Y T, Chen S P, Fang T Y, Lu C H, Xu Z Z. 2017a. Self-healing epoxy coatings via focused sunlight based on photothermal effect. Macromolecular Materials and Engineering, 302(9): 1700059, https://doi.org/10.1002/mame.201700059.
Fang Y L, Du X S, Du Z L, Wang H B, Cheng X. 2017b. Lightand heat-triggered polyurethane based on dihydroxyl anthracene derivatives for self-healing applications.Journal of Materials Chemistry A, 5(17): 8 010-8 017, https://doi.org/10.1039/c7ta00871f.
Feng C J, Yang X L, Sun Z L, Xue J, Sun L R, Wang J H, He Z L, Yu J Q. 2020. Dual interfacial synergism in Au-Pd/ZnIn2S4 for promoting photocatalytic selective oxidation of aromatic alcohol. Applied Surface Science, 501:144018, https://doi.org/10.1016/j.apsusc.2019.144018.
Feng Y C, Chen S G, Cheng Y F. 2017. Fabrication of SiO2 nanoparticle-polyelectrolyte nanocontainers with preloaded benzotriazole inhibitors and their self-releasing mechanism and kinetics. Journal of Materials Science, 52(14): 8 576-8 590, https://doi.org/10.1007/s10853-017-1074-x.
Fu J J, Chen T, Wang M D, Yang N W, Li S N, Wang Y, Liu X D. 2013a. Acid and alkaline dual stimuli-responsive mechanized hollow mesoporous silica nanoparticles as smart nanocontainers for intelligent anticorrosion coatings. ACS Nano, 7(12): 11 397-11 408, https://doi.org/10.1021/nn4053233.
Fu J J, Chen T, Wang M D, Yang N W, Li S N, Wang Y, Liu X D. 2013b. Acid and alkaline dual stimuli-responsive mechanized hollow mesoporous silica nanoparticles as smart nanocontainers for intelligent anticorrosion coatings. ACS Nano, 7(12): 11 397-11 408, https://doi.org/10.1021/nn4053233.
Gao L, He J L, Hu J, Wang C. 2015. Photoresponsive selfhealing polymer composite with photoabsorbing hybrid microcapsules. ACS Applied Materials & Interfaces, 7(45):25 546-25 552, https://doi.org/10.1021/acsami.5b09121.
González-García Y, Mol J M C, Muselle T, De Graeve I, Van Assche G, Scheltjens G, Van Mele B, Terryn H. 2011a. A combined mechanical, microscopic and local electrochemical evaluation of self-healing properties of shape-memory polyurethane coatings. Electrochimica Acta, 56(26): 9 619-9 626, https://doi.org/10.1016/j.electacta.2011.03.081.
González-García Y, Mol J, Muselle T, De Graeve I, Van Assche G, Scheltjens G, Van Mele B, Terryn H. 2011b. SECM study of defect repair in self-healing polymer coatings on metals. Electrochemistry Communications, 13(2): 169-173, https://doi.org/10.1016/j.elecom.2010.12.005.
Gupta G, Birbilis N, Cook A B, Khanna A S. 2013. Polyanilinelignosulfonate/epoxy coating for corrosion protection of AA2024-T3. Corrosion Science, 67: 256-267, https://doi.org/10.1016/j.corsci.2012.10.022.
Habault D, Zhang H J, Zhao Y. 2013. Light-triggered selfhealing and shape-memory polymers. Chemical Society Reviews, 42(17): 7 244-7 256, https://doi.org/10.1039/c3cs35489j.
Haddadi S A, Ramazani S A A, Mahdavian M, Taheri P, Mol J M C. 2018. Fabrication and characterization of graphenebased carbon hollow spheres for encapsulation of organic corrosion inhibitors. Chemical Engineering Journal, 352:909-922, https://doi.org/10.1016/j.cej.2018.06.063.
Hang T T X, Truc T A, Duong N T, Pébère N, Olivier M G. 2012. Layered double hydroxides as containers of inhibitors in organic coatings for corrosion protection of carbon steel. Progress in Organic Coatings, 74(2): 343-348, https://doi.org/10.1016/j.porgcoat.2011.10.020.
He X D, Shi X M. 2009. Self-repairing coating for corrosion protection of aluminum alloys. Progress in Organic Coatings, 65(1): 37-43, https://doi.org/10.1016/j.porgcoat.2008.09.003.
Hou B R, Li X G, Ma X M, Du C W, Zhang A W, Zheng M, Xu W C, Lu D Z, Ma F B. 2017. The cost of corrosion in China. NPJ Materials Degradation, 1(1): 4, https://doi.org/10.1038/s41529-017-0005-2.
Huang M X, Yang J L. 2011. Facile microencapsulation of HDI for self-healing anticorrosion coatings. Journal of Materials Chemistry, 21(30): 11 123-11 130, https://doi.org/10.1039/c1jm10794a.
Jorcin J B, Scheltjens G, Van Ingelgem Y, Tourwé E, Van Assche G, De Graeve I, Van Mele B, Terryn H, Hubin A. 2010. Investigation of the self-healing properties of shape memory polyurethane coatings with the ‘odd random phase multisine’ electrochemical impedance spectroscopy.Electrochimica Acta, 55(21): 6 195-6 203, https://doi.org/10.1016/j.electacta.2010.01.027.
Kaur R, Hasan A, Iqbal N, Alam S, Saini M K, Raza S K. 2014.Synthesis and surface engineering of magnetic nanoparticles for environmental cleanup and pesticide residue analysis: a review. Journal of Separation Science, 37(14): 1 805-1 825, https://doi.org/10.1002/jssc.201400256.
Keller M W, White S R, Sottos N R. 2007. A self-healing poly(dimethyl siloxane) elastomer. Advanced Functional Materials, 17(14): 2 399-2 404, https://doi.org/10.1002/adfm.200700086.
Kendig M, Hon M. 2005. A hydrotalcite-like pigment containing an organic anion corrosion inhibitor.Electrochemical and Solid State Letters, 8(3): B10-B11, https://doi.org/10.1149/1.1857743.
Kermannezhad K, Chermahini A N, Momeni M M, Rezaei B. 2016. Application of amine-functionalized MCM-41 as pH-sensitive nano container for controlled release of 2-mercaptobenzoxazole corrosion inhibitor. Chemical Engineering Journal, 306: 849-857, https://doi.org/10.1016/j.cej.2016.08.004.
Kowalski D, Ueda M, Ohtsuka T. 2010. Self-healing ionpermselective conducting polymer coating. Journal of Materials Chemistry, 20(36): 7 630-7 633, https://doi.org/10.1039/c0jm00866d.
Krishnamoorthy K, Jeyasubramanian K, Premanathan M, Subbiah G, Shin H S, Kim S J. 2014. Graphene oxide nanopaint. Carbon, 72: 328-337, https://doi.org/10.1016/j.carbon.2014.02.013.
Kuroki H, Tokarev I, Nykypanchuk D, Zhulina E, Minko S. 2013. Stimuli-responsive materials with self-healing antifouling surface via 3D polymer grafting. Advanced Functional Materials, 23(36): 4 593-4 600, https://doi.org/10.1002/adfm.201300363.
Leal D A, Riegel-Vidotti I C, Ferreira M G S, Marino C E B. 2018. Smart coating based on double stimuli-responsive microcapsules containing linseed oil and benzotriazole for active corrosion protection. Corrosion Science, 130:56-63, https://doi.org/10.1016/j.corsci.2017.10.009.
Lee M W, An S, Jo H S, Yoon S S, Yarin A L. 2015. Selfhealing nanofiber-reinforced polymer composites. 1.tensile testing and recovery of mechanical properties.ACS Applied Materials & Interfaces, 7(35): 19 546-19 554, https://doi.org/10.1021/acsami.5b05998.
Li G L, Zheng Z L, Mö hwald H, Shchukin D G. 2013. Silica/polymer double-walled hybrid nanotubes: synthesis and application as stimuli-responsive nanocontainers in selfhealing coatings. ACS Nano, 7(3): 2 470-2 478, https://doi.org/10.1021/nn305814q.
Li G Q, Nettles D. 2010. Thermomechanical characterization of a shape memory polymer based self-repairing syntactic foam. Polymer, 51(3): 755-762.
Liu J, Qiao S Z, Hu Q H, Lu G Q. 2011. Magnetic nanocomposites with mesoporous structures: synthesis and applications. Small, 7(4): 425-443, https://doi.org/10.1002/smll.201001402.
Luo X F, Mather P T. 2013. Shape memory assisted selfhealing coating. ACS Macro Letters, 2(2): 152-156, https://doi.org/10.1021/mz400017x.
Luo X H, Yuan S, Pan X Y, Zhang C X, Du S, Liu Y L. 2017.Synthesis and enhanced corrosion protection performance of reduced graphene oxide nanosheet/ZnAl layered double hydroxide composite films by hydrothermal continuous flow method. ACS Applied Materials & Interfaces, 9(21): 18 263-18 275, https://doi.org/10.1021/acsami.7b02580.
Lutz A, van den Berg O, van Damme J, Verheyen K, Bauters E, De Graeve I, Du Prez F E, Terryn H. 2014. A shaperecovery polymer coating for the corrosion protection of metallic surfaces. ACS Applied Materials & Interfaces, 7(1): 175-183, https://doi.org/10.1021/am505621x.
Mahajanam S P V, Buchheit R G. 2008. Characterization of inhibitor release from Zn-Al-[V10O28]6- hydrotalcite pigments and corrosion protection from hydrotalcitepigmented epoxy coatings. Corrosion, 64(3): 230-240, https://doi.org/10.5006/1.3278468.
Mahmoudian M R, Alias Y, Basirun W J. 2012. Effect of narrow diameter polyaniline nanotubes and nanofibers in polyvinyl butyral coating on corrosion protective performance of mild steel. Progress in Organic Coatings, 75(4): 301-308, https://doi.org/10.1016/j.porgcoat.2012.08.004.
Mahmoudian M, Nozad E, Kochameshki M G, et al. 2018.Preparation and investigation of hybrid self-healing coatings containing linseed oil loaded nanocapsules, potassium ethyl xanthate and benzotriazole on copper surface. Progress in Organic Coatings, 120: 167-178, https://doi.org/10.1016/j.porgcoat.2018.03.014.
Makhlouf A S H. 2014. Handbook of Smart Coatings for Materials Protection. Elsevier, New York.
Meng Y, Yang J C, Lewis C L, Jiang J S, Anthamatten M. 2016.Photoinscription of chain anisotropy into polymer networks. Macromolecules, 49(23): 9 100-9 107, https://doi.org/10.1021/acs.macromol.6b01990.
Michal B T, Jaye C A, Spencer E J, Rowan S J. 2013. Inherently photohealable and thermal shape-memory polydisulfide networks. ACS Macro Letters, 2(8): 694-699, https://doi.org/10.1021/mz400318m.
Nji J, Li G Q. 2012. Damage healing ability of a shapememory-polymer-based particulate composite with small thermoplastic contents. Smart Materials and Structures, 21(2): 025011, https://doi.org/10.1088/0964-1726/21/2/025011.
Ostrowski N, Lee B, Enick N, Carlson B, Kunjukunju S, Roy A, Kumta P N. 2013. Corrosion protection and improved cytocompatibility of biodegradable polymeric layer-bylayer coatings on AZ31 magnesium alloys. Acta Biomaterialia, 9(10): 8 704-8 713, https://doi.org/10.1016/j.actbio.2013.05.010.
Park J H, Braun P V. 2010. Coaxial electrospinning of selfhealing coatings. Advanced Materials, 22(4): 496-499, https://doi.org/10.1002/adma.200902465.
Poznyak S K, Tedim J, Rodrigues L M, Salak A N, Zheludkevich M L, Dick L F P, Ferreira M G S. 2009. Novel inorganic host layered double hydroxides intercalated with guest organic inhibitors for anticorrosion applications. ACS Applied Materials & Interfaces, 1(10): 2 353-2 362, https://doi.org/10.1021/am900495r.
Qian B, Michailidis M, Bilton M, Hobson T, Zheng Z L, Shchukin D. 2019a. Tannic complexes coated nanocontainers for controlled release of corrosion inhibitors in self-healing coatings. Electrochimica Acta, 297: 1 035-1 041, https://doi.org/10.1016/j.electacta. 2018.12.062.
Qian B, Zheng Z L, Michailids M, Fleck N, Bilton M, Song Y, Li G L, Shchukin D. 2019b. Mussel-inspired self-healing coatings based on polydopamine-coated nanocontainers for corrosion protection. ACS Applied Materials & Interfaces, 11(10): 10 283-10 291, https://doi.org/10.1021/acsami.8b21197.
Qian H C, Xu D K, Du C W, Zhang D W, Li X G, Huang L Y, Deng L P, Tu Y C, Mol J M C, Terryn H A. 2017. Dualaction smart coatings with a self-healing superhydrophobic surface and anti-corrosion properties. Journal of Materials Chemistry A, 5(5): 2 355-2 364,
Serdechnova M, Kallip S, Ferreira M G S, Zheludkevich M L. 2014. Active self-healing coating for galvanically coupled multi-material assemblies. Electrochemistry Communications, 41: 51-54, https://doi.org/10.1016/j.elecom.2014.01.023.
Singh H K, Yeole K V, Mhaske S T. 2016. Synthesis and characterization of layer-by-layer assembled magnesium zinc molybdate nanocontainer for anticorrosive application. Chemical Engineering Journal, 295: 414-426, https://doi.org/10.1016/j.cej.2016.03.055.
Siva T, Sathiyanarayanan S. 2015. Self healing coatings containing dual active agent loaded urea formaldehyde(UF) microcapsules. Progress in Organic Coatings, 82:57-67, https://doi.org/10.1016/j.porgcoat.2015.01.010.
Skorb E V, Fix D, Andreeva D V, Möhwald H, Shchukin D G. 2009a. Surface-modified mesoporous sio2 containers for corrosion protection. Advanced Functional Materials, 19(15): 2 373-2 379, https://doi.org/10.1002/adfm.200801804.
Skorb E V, Skirtach A G, Sviridov D V, Shchukin D G, Möhwald H. 2009b. Laser-controllable coatings for corrosion protection. ACS Nano, 3(7): 1 753-1 760, https://doi.org/10.1021/nn900347x.
Skorb E V, Sviridov D V, Möhwald H, Shchukin D G. 2009c.Light responsive protective coatings. Chemical Communications, (40): 6 041-6 043, https://doi.org/10.1039/b914257f.
Snihirova D, Lamaka S V, Taryba M, Salak A N, Kallip S, Zheludkevich M L, Ferreira M G S, Montemor M F. 2010.Hydroxyapatite microparticles as feedback-active reservoirs of corrosion inhibitors. ACS Applied Materials & Interfaces, 2(11): 3 011-3 022, https://doi.org/10.1021/am1005942.
Song Y K, Chung C M. 2013. Repeatable self-healing of a microcapsule-type protective coating. Polymer Chemistry, 4(18): 4 940-4 947, https://doi.org/10.1039/c3py00102d.
Song Y K, Jo Y H, Lim Y J, Cho S Y, Yu H C, Ryu B C, Lee S I, Chung C M. 2013. Sunlight-induced self-healing of a microcapsule-type protective coating. ACS Applied Materials & Interfaces, 5(4): 1 378-1 384, https://doi.org/10.1021/am302728m.
Sun D W, An J L, Wu G, Yang J L. 2015. Double-layered reactive microcapsules with excellent thermal and nonpolar solvent resistance for self-healing coatings. Journal of Materials Chemistry A, 3(8): 4 435-4 444, https://doi.org/10.1039/c4ta05339g.
Sun D W, Chong Y B, Chen K, Yang J L. 2018. Chemically and thermally stable isocyanate microcapsules having good self-healing and self-lubricating performances. Chemical Engineering Journal, 346: 289-297, https://doi.org/10.1016/j.cej.2018.04.046.
Szabó T, Telegdi J, Nyikos L. 2015. Linseed oil-filled microcapsules containing drier and corrosion inhibitorTheir effects on self-healing capability of paints. Progress in Organic Coatings, 84: 136-142, https://doi.org/10.1016/j.porgcoat.2015.02.020.
Tatiya P D, Hedaoo R K, Mahulikar P P, Gite V V. 2013. Novel polyurea microcapsules using dendritic functional monomer: synthesis, characterization, and its use in selfhealing and anticorrosive polyurethane coatings.Industrial & Engineering Chemistry Research, 52(4):1 562-1 570, https://doi.org/10.1021/ie301813a.
Tavandashti N P, Ghorbani M, Shojaei A, Gonzalez-Garcia Y, Terryn H, Mol J M C. 2016a. pH responsive Ce(Ⅲ) loaded polyaniline nanofibers for self-healing corrosion protection of AA2024-T3. Progress in Organic Coatings, 99: 197-209, https://doi.org/10.1016/j.porgcoat.2016.04.046.
Tavandashti N P, Ghorbani M, Shojaei A, Mol J M C, Terryn H, Baert K, Gonzalez-Garcia Y. 2016b. Inhibitor-loaded conducting polymer capsules for active corrosion protection of coating defects. Corrosion Science, 112:138-149, https://doi.org/10.1016/j.corsci.2016.07.003.
Tedim J, Poznyak S K, Kuznetsova A, Raps D, Hack T, Zheludkevich M L, Ferreira M G S. 2010. Enhancement of active corrosion protection via combination of inhibitor-loaded nanocontainers. ACS Applied Materials & Interfaces, 2(5): 1 528-1 535, https://doi.org/10.1021/am100174t.
Tedim J, Zheludkevich M L, Bastos A C, Salak A N, Lisenkov A D, Ferreira M G S. 2014. Influence of preparation conditions of Layered Double Hydroxide conversion films on corrosion protection. Electrochimica Acta, 117:164-171, https://doi.org/10.1016/j.electacta.2013.11.111.
Telitel S, Amamoto Y, Poly J, Morlet-Savary F, Soppera O, Lalevée J, Matyjaszewski K. 2014. Introduction of selfhealing properties into covalent polymer networks via the photodissociation of alkoxyamine junctions. Polymer Chemistry, 5(3): 921-930, https://doi.org/10.1039/c3py01162c.
Tran T H, Vimalanandan A, Genchev G, Fickert J, Landfester K, Crespy D, Rohwerder M. 2015. Regenerative Nanohybrid coating tailored for autonomous corrosion protection. Advanced Materials, 27(25): 3 825-3 830, https://doi.org/10.1002/adma.201501044.
Twite R L, Bierwagen G P. 1998. Review of alternatives to chromate for corrosion protection of aluminum aerospace alloys. Progress in Organic Coatings, 33(2): 91-100, https://doi.org/10.1016/S0300-9440(98)00015-0.
Vimalanandan A, Lv L P, Tran T H, Landfester K, Crespy D, Rohwerder M. 2013. Redox-responsive self-healing for corrosion protection. Advanced Materials, 25(48): 6 980-6 984, https://doi.org/10.1002/adma.201302989.
Wang D H, Bierwagen G R. 2009. Sol-gel coatings on metals for corrosion protection. Progress in Organic Coatings, 64(4):327-338, https://doi.org/10.1016/j.porgcoat.2008.08.010.
Wang L T, Deng L P, Zhang D W, Qian H C, Du C W, Li X G, Mol J M C, Terryn H A. 2016. Shape memory composite(SMC) self-healing coatings for corrosion protection.Progress in Organic Coatings, 97: 261-268, https://doi.org/10.1016/j.porgcoat.2016.04.041.
Wang M D, Liu M Y, Fu J J. 2015. An intelligent anticorrosion coating based on pH-responsive smart nanocontainers fabricated via a facile method for protection of carbon steel. Journal of Materials Chemistry A, 3(12): 6 423-6 431, https://doi.org/10.1039/c5ta00417a.
Wang P, Zhang D, Qiu R, Wu J J. 2014. Super-hydrophobic metal-complex film fabricated electrochemically on copper as a barrier to corrosive medium. Corrosion Science, 83:317-326, https://doi.org/10.1016/j.corsci.2014.02.028.
Wang T, Tan L H, Ding C D, Wang M D, Xu J H, Fu J J. 2017.Redox-triggered controlled release systems-based bilayered nanocomposite coating with synergistic selfhealing property. Journal of Materials Chemistry A, 5(4):1 756-1 768, https://doi.org/10.1039/c6ta08547d.
Wang W, Li W H, Fan W J, Zhang X Y, Song L Y, Xiong C S, Gao X, Liu X J. 2018. Accelerated self-healing performance of magnetic gradient coating. Chemical Engineering Journal, 332: 658-670, https://doi.org/10.1016/j.cej.2017.09.112.
Wang X, Jing C, Chen Y X, Wang X S, Zhao G, Zhang X, Wu L, Liu X Y, Dong B Q, Zhang Y X. 2020. Active corrosion protection of super-hydrophobic corrosion inhibitor intercalated Mg-Al layered double hydroxide coating on AZ31 magnesium alloy. Journal of Magnesium and Alloys, 8(1): 291-300, https://doi.org/10.1016/j.jma.2019.11.011.
Wei H G, Ding D W, Wei S Y, Guo Z H. 2013. Anticorrosive conductive polyurethane multiwalled carbon nanotube nanocomposites. Journal of Materials Chemistry A, 1(36): 10 805-10 813, https://doi.org/10.1039/c3ta11966a.
Wei T, Tang Z C, Yu Q, Chen H. 2017. Smart antibacterial surfaces with switchable bacteria-killing and bacteriareleasing capabilities. ACS Applied Materials & Interfaces, 9(43): 37 511-37 523, https://doi.org/10.1021/acsami.7b13565.
White S R, Sottos N R, Geubelle P H, Moore J S, Kessler M R, Sriram S R, Brown E N, Viswanathan S. 2001. Autonomic healing of polymer composites. Nature, 409(6822): 794-797, https://doi.org/10.1038/35057232.
Williams G R, O’Hare D. 2006. Towards understanding, control and application of layered double hydroxide chemistry. Journal of Materials Chemistry, 16(30): 3 065-3 074, https://doi.org/10.1039/B604895A.
Williams G, McMurray H N. 2004. Inhibition of filiform corrosion on polymer coated AA2024-T3 by hydrotalcitelike pigments incorporating organic anions.Electrochemical and Solid-State Letters, 7(5): B13-B15, https://doi.org/10.1149/1.1691529.
Xie T. 2011. Recent advances in polymer shape memory.Polymer, 52(22): 4 985-5 000, https://doi.org/10.1016/j.polymer.2011.08.003.
Xiong W, Tang J N, Zhu G M, Han N X, Schlangen E, Dong B Q, Wang X F, Xing F. 2015. A novel capsule-based selfrecovery system with a chloride ion trigger. Scientific Reports, 5(1): 10866, https://doi.org/10.1038/srep10866.
Yang J L, Keller M W, Moore J S, White S R, Sottos N R. 2008. Microencapsulation of isocyanates for self-healing polymers. Macromolecules, 41(24): 9 650-9 655, https://doi.org/10.1021/ma801718v.
Yang T I, Peng C W, Lin Y L, Weng C J, Edgington G, Mylonakis A, Huang T C, Hsu C H, Yeh J M, Wei Y. 2012.Synergistic effect of electroactivity and hydrophobicity on the anticorrosion property of room-temperature-cured epoxy coatings with multi-scale structures mimicking the surface of Xanthosoma sagittifolium leaf. Journal of Materials Chemistry, 22(31): 15 845-15 852, https://doi.org/10.1039/c2jm32365f.
Yang X L, Yu J Q, Zhang Y, Peng Y H, Li Z, Feng C J, Sun Z L, Yu X F, Cheng J B, Wang Y. 2020. Visible-near-infraredresponsive g-C3N4Hx+ reduced decatungstate with excellent performance for photocatalytic removal of petroleum hydrocarbon. Journal of Hazardous Materials, 381:120994, https://doi.org/10.1016/j.jhazmat.2019.120994.
Yasakau K A, Kallip S, Zheludkevich M L, Ferreira M G S. 2013. Active corrosion protection of AA2024 by sol-gel coatings with cerium molybdate nanowires.Electrochimica Acta, 112: 236-246, https://doi.org/10.1016/j.electacta.2013.08.126.
Ying H Z, Zhang Y F, Cheng J J. 2014. Dynamic urea bond for the design of reversible and self-healing polymers. Nature Communications, 5(1): 3 218, https://doi.org/10.1038/Ncomms4218.
Yuan L, Liang G Z, Xie J Q, Li L, Guo J. 2006. Preparation and characterization of poly(urea-formaldehyde) microcapsules filled with epoxy resins. Polymer, 47(15): 5 338-5 349, https://doi.org/10.1016/j.polymer.2006.05.051.
Zahidah K A, Kakooei S, Ismail M C, Raja P B. 2017.Halloysite nanotubes as nanocontainer for smart coating application: a review. Progress in Organic Coatings, 111:175-185, https://doi.org/10.1016/j.porgcoat.2017.05.018.
Zeng R C, Cui L Y, Jiang K, Liu R, Zhao B D, Zheng Y F. 2016. In vitro corrosion and cytocompatibility of a microarc oxidation coating and poly(L-lactic acid)composite coating on Mg-1Li-1Ca alloy for orthopedic implants. ACS Applied Materials & Interfaces, 8(15):10 014-10 028, https://doi.org/10.1021/acsami.6b00527.
Zeng X, Tao W, Liu G, Mei L. 2017. Polydopamine-based surface modification of copolymeric nanoparticles as a targeted drug delivery system for cancer therapy. Journal of Controlled Release, 259: e150-e151, https://doi.org/10.1016/j.jconrel.2017.03.303.
Zhang B B, Zhu Q J, Li Y T, Hou B R. 2018a. Facile fluorinefree one step fabrication of superhydrophobic aluminum surface towards self-cleaning and marine anticorrosion.Chemical Engineering Journal, 352: 625-633, https://doi.org/10.1016/j.cej.2018.07.074.
Zhang C, Wang H R, Zhou Q X. 2018b. Preparation and characterization of microcapsules based self-healing coatings containing epoxy ester as healing agent. Progress in Organic Coatings, 125: 403-410, https://doi.org/10.1016/j.porgcoat.2018.09.028.
Zhang F, Ju P F, Pan M Q, Zhang D W, Huang Y, Li G L, Li X G. 2018c. Self-healing mechanisms in smart protective coatings: a review. Corrosion Science, 144: 74-88, https://doi.org/10.1016/j.corsci.2018.08.005.
Zhao Y H, Vuluga D, Lecamp L, Burel F. 2016. Photoinitiated thiol-epoxy addition for the preparation of photoinduced self-healing fatty coatings. RSC Advances, 6(38): 32 098-32 105, https://doi.org/10.1039/C6RA03693G.
Zhao Y, Berger R, Landfester K, Crespy D. 2015. Double redox-responsive release of encoded and encapsulated molecules from patchy nanocapsules. Small, 11(25):2 995-2 999, https://doi.org/10.1002/smll.201402521.
Zheludkevich M L, Poznyak S K, Rodrigues L M, Raps D, Hack T, Dick L F, Nunes T, Ferreira M G S. 2010. Active protection coatings with layered double hydroxide nanocontainers of corrosion inhibitor. Corrosion Science, 52(2): 602-611, https://doi.org/10.1016/j.corsci.2009.10.020.
Zheludkevich M L, Shchukin D G, Yasakau K A, Möhwald H, Ferreira M G S. 2007. Anticorrosion coatings with selfhealing effect based on nanocontainers impregnated with corrosion inhibitor. Chemistry of Materials, 19(3): 402-411, https://doi.org/10.1021/cm062066k.
Zheng Z L, Huang X, Schenderlein M, Borisova D, Cao R, Möhwald H, Shchukin D. 2013. Self-healing and antifouling multifunctional coatings based on pH and sulfide ion sensitive nanocontainers. Advanced Functional Materials, 23(26): 3 307-3 314, https://doi.org/10.1002/adfm.201203180.
Copyright © Haiyang Xuebao