Cite this paper:
LI Mengna, CHEN Hao, WANG Minxiao, ZHONG Zhaoshan, ZHOU Li, LI Chaolun. Identification and characterization of endosymbiosis-related immune genes in deep-sea mussels Gigantidas platifrons[J]. Journal of Oceanology and Limnology, 2020, 38(4): 1292-1303

Identification and characterization of endosymbiosis-related immune genes in deep-sea mussels Gigantidas platifrons

LI Mengna1,4, CHEN Hao1,2,3, WANG Minxiao1,2,3, ZHONG Zhaoshan1,4, ZHOU Li1,2,3, LI Chaolun1,2,3,4
1 Center of Deep Sea Research and Key Laboratory of Marine Ecology & Environmental Sciences (CODR and KLMEES), Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China;
2 Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China;
3 Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China;
4 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract:
Deep-sea mussels of the subfamily Bathymodiolinae are common and numerically dominant species widely distributed in cold seeps and hydrothermal vents. During long-time evolution, deep-sea mussels have evolved to be well adapted to the local environment of cold seeps and hydrothermal vents by various ways, especially by establishing endosymbiosis with chemotrophic bacteria. However, biological processes underlying the establishment and maintenance of symbiosis between host mussels and symbionts are largely unclear. In the present study, Gigantidas platifrons genes possibly involved in the symbiosis with methane oxidation symbionts were identified and characterized by Lipopolysaccharide (LPS) pull-down and in situ hybridization. Five immune related proteins including Toll-like receptor 2 (TLR2), integrin, vacuolar sorting protein (VSP), matrix metalloproteinase 1 (MMP1), and leucine-rich repeat (LRR-1) were identified by LPS pull-down assay. These five proteins were all conserved in either molecular sequences or functional domains and known to be key molecules in host immune recognition, phagocytosis, and lysosome-mediated digestion. Furthermore, in situ hybridization of LRR-1, TLR2 and VSP genes was conducted to investigate their expression patterns in gill tissues of G. platifrons. Consequently, LRR-1, TLR2, and VSP genes were found expressed exclusively in the bacteriocytes of G. platifrons. Therefore, it was suggested that TLR2, integrin, VSP, MMP1, and LRR-1 might be crucial molecules in the symbiosis between G. platifrons and methane oxidation bacteria by participating in symbiosis-related immune processes.
Key words:    Gigantidas platifrons|endosymbiosis|innate immunity|pull-down assay|immune recognition|methane oxidation bacteria   
Received: 2020-01-17   Revised: 2020-03-27
Tools
PDF (2359 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by LI Mengna
Articles by CHEN Hao
Articles by WANG Minxiao
Articles by ZHONG Zhaoshan
Articles by ZHOU Li
Articles by LI Chaolun
References:
Akira S, Takeda K. 2004. Toll-like receptor signalling. Nature Reviews Immunology, 4(7): 499-511, https://doi.org/10.1038/nri1391.
Barry J P, Buck K R, Kochevar R K, Nelson D C, Fujiwara Y, Goffredi S K, Hashimoto J. 2002. Methane-based symbiosis in a mussel, Bathymodiolus platifrons, from cold seeps in Sagami Bay, Japan. Invertebrate Biology, 121(1): 47-54, https://doi.org/10.1111/j.1744-7410.2002.tb00128.x.
Bettencourt R, Dando P, Collins P, Costa V, Allam B, Serrão Santos R. 2009. Innate immunity in the deep sea hydrothermal vent mussel Bathymodiolus azoricus.Comparative Biochemistry and Physiology Part A:Molecular & Integrative Physiology, 152(2): 278-289, https://doi.org/10.1016/j.cbpa.2008.10.022.
Bettencourt R, Pinheiro M, Egas C, Gomes P, Afonso M, Shank T, Serrão Santos R. 2010. High-throughput sequencing and analysis of the gill tissue transcriptome from the deep-sea hydrothermal vent mussel Bathymodiolus azoricus. BMC Genomics, 11(1): 559, https://doi.org/10.1186/1471-2164-11-559.
Brooks J M, Kennicutt Ⅱ M C, Fisher C R, Macko S A, Cole K, Childress J J, Bidigare R R, Vetter R D. 1987. Deep-sea hydrocarbon seep communities: evidence for energy and nutritional carbon sources. Science, 238(4830): 1 138-1 142, https://doi.org/10.1126/science.238.4830.1138.
Cerenius L, Söderhäll K. 2013. Variable immune molecules in invertebrates. Journal of Experimental Biology, 216(23):4 313-4 319, https://doi.org/10.1242/jeb.085191.
Chen H, Wang M X, Zhang H, Wang H, Lv Z, Zhou L, Zhong Z S, Lian C, Cao L, Li C L. 2019. An LRR-domain containing protein identified in Bathymodiolus platifrons serves as intracellular recognition receptor for the endosymbiotic methane-oxidation bacteria. Fish & Shellfish Immunology, 93: 354-360, https://doi.org/10.1016/j.fsi.2019.07.032.
Chow J, Lee S M, Shen Y, Khosravi A, Mazmanian S K. 2010.Host-bacterial symbiosis in health and disease. Advances in Immunology, 107: 243-274, https://doi.org/10.1016/B978-0-12-381300-8.00008-3.
Chu H, Mazmanian S K. 2013. Innate immune recognition of the microbiota promotes host-microbial symbiosis.Nature Immunology, 14(7): 668-675, https://doi.org/10.1038/ni.2635.
Corliss J B, Dymond J, Gordon L I, Edmond J M, von Herzen R P, Ballard R D, Green K, Williams D, Bainbridge A, Crane K, van Andel T H. 1979. Submarine thermal springs on the Galápagos Rift. Science, 203(4385): 1 073-1 083, https://doi.org/10.1126/science.203.4385.1073.
Danovaro R, Corinaldesi C, Dell'Anno A, Snelgrove P V R. 2017.The deep-sea under global change. Current Biology, 27(11):R461-R465, https://doi.org/10.1016/j.cub.2017.02.046.
Danovaro R, Snelgrove P V R, Tyler P. 2014. Challenging the paradigms of deep-sea ecology. Trends in Ecology & Evolution, 29(8): 465-475, https://doi.org/10.1016/j.tree.2014.06.002.
Détrée C, Lallier F H, Tanguy A, Mary J. 2017. Identification and gene expression of multiple peptidoglycan recognition proteins (PGRPs) in the deep-sea mussel Bathymodiolus azoricus, involvement in symbiosis? Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 207: 1-8, https://doi.org/10.1016/j.cbpb.2017.02.002.
Dubilier N, Bergin C, Lott C. 2008. Symbiotic diversity in marine animals: the art of harnessing chemosynthesis.Nature Reviews Microbiology, 6(10): 725-740, https://doi.org/10.1038/nrmicro1992.
Feng D, Cheng M, Kiel S, Qiu J W, Yang Q H, Zhou H Y, Peng Y B, Chen D F. 2015. Using Bathymodiolus tissue stable carbon, nitrogen and sulfur isotopes to infer biogeochemical process at a cold seep in the South China Sea. Deep Sea Research Part I: Oceanographic Research Papers, 104: 52-59, https://doi.org/10.1016/j.dsr.2015.06.011.
Fiala-Médioni A, McKiness Z, Dando P, Boulegue J, Mariotti A, Alayse-Danet A, Robinson J, Cavanaugh C. 2002.Ultrastructural, biochemical, and immunological characterization of two populations of the mytilid mussel Bathymodiolus azoricus from the Mid-Atlantic Ridge:evidence for a dual symbiosis. Marine Biology, 141(6):1 035-1 043, https://doi.org/10.1007/s00227-002-0903-9.
Fontanez K M, Cavanaugh C M. 2014. Evidence for horizontal transmission from multilocus phylogeny of deep-sea mussel (Mytilidae) symbionts. Environmental Microbiology, 16(12): 3 608-3 621, https://doi.org/10.1111/1462-2920.12379.
Fujiwara Y, Takai K, Uematsu K, Tsuchida S, Hunt J C, Hashimoto J. 2000. Phylogenetic characterization of endosymbionts in three hydrothermal vent mussels:influence on host distributions. Marine Ecology Progress Series, 208: 147-155, https://doi.org/10.3354/meps208147.
Giancotti F G, Ruoslahti E. 1999. Integrin signaling. Science, 285(5430): 1 028-1 033, https://doi.org/10.1126/science. 285.5430.1028.
Halary S, Riou V, Gaill F, Boudier T, Duperron S. 2008.3D FISH for the quantification of methane- and sulphuroxidizing endosymbionts in bacteriocytes of the hydrothermal vent mussel Bathymodiolus azoricus. The ISME Journal, 2(3): 284-292, https://doi.org/10.1038/ismej.2008.3.
Humphries M J. 2000. Integrin structure. Biochemical Society Transactions, 28(4): 311-39, https://doi.org/10.1042/bst0280311.
Kádár E, Davis S A, Lobo-da-Cunha A. 2008. Cytoenzymatic investigation of intracellular digestion in the symbiontbearing hydrothermal bivalve Bathymodiolus azoricus.Marine Biology, 153(5): 995-1 004, https://doi.org/10.1007/s00227-007-0872-0.
Kawai T, Akira S. 2010. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nature Immunology, 11(5): 373-384, https://doi.org/10.1038/ni.1863.
Kennicutt Ⅱ M C, Brooks J M, Bidigare R R, Fay R R, Wade T L, McDonald T J. 1985. Vent-type taxa in a hydrocarbon seep region on the Louisiana slope. Nature, 317(6035):315-353, https://doi.org/10.1038/317351a0.
Kolesnikova L, Strecker T, Morita E, Zielecki F, Mittler E, Crump C, Becker S. 2009. Vacuolar protein sorting pathway contributes to the release of Marburg virus.Journal of Virology, 83(5): 2 327-2 337, https://doi.org/10.1128/JVI.02184-08.
Li H, Huang X Y, Zeng Z H, Peng X X, Peng B. 2016.Identification of the interactome between fish plasma proteins and Edwardsiella tarda reveals tissue-specific strategies against bacterial infection. The International Journal of Biochemistry & Cell Biology, 78: 260-267, https://doi.org/10.1016/j.biocel.2016.07.021.
Martins E, Figueras A, Novoa B, Serrão Santos R, Moreira R, Bettencourt R. 2014. Comparative study of immune responses in the deep-sea hydrothermal vent mussel Bathymodiolus azoricus and the shallow-water mussel Mytilus galloprovincialis challenged with Vibrio bacteria.Fish & Shellfish Immunology, 40(2): 485-499, https://doi.org/10.1016/j.fsi.2014.07.018.
Ponnudurai R, Kleiner M, Sayavedra L, Petersen J M, Moche M, Otto A, Becher D, Takeuchi T, Satoh N, Dubilier N, Schweder T, Markert S. 2017. Metabolic and physiological interdependencies in the Bathymodiolus azoricus symbiosis. The ISME Journal, 11(2): 463-477, https://doi.org/10.1038/ismej.2016.124.
Sayavedra L, Kleiner M, Ponnudurai R, Wetzel S, Pelletier E, Barbe V, Satoh N, Shoguchi E, Fink D, Breusing C, Reusch T B H, Rosenstiel P, Schilhabe M B, Becher D, Schweder T, Markert S, Dubilier N, Petersen J M. 2015.Abundant toxin-related genes in the genomes of beneficial symbionts from deep-sea hydrothermal vent mussels.eLife, 4, e07966, https://doi.org/10.7554/eLife.07966.001.
Sibuet M, Olu K. 1998. Biogeography, biodiversity and fluid dependence of deep-sea cold-seep communities at active and passive margins. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 45(1-3): 517-567, https://doi.org/10.1016/s0967-0645(97)00074-x.
Sievert S M, Vetriani C. 2015. Chemoautotrophy at deep-sea vents: past, present, and future. Oceanography, 25(1):218-233, https://doi.org/10.5670/oceanog.2012.21.
Sun J, Zhang Y, Xu T, Zhang Y, Mu H W, Zhang Y J, Lan Y, Fields C J, Hui J H L, Zhang W P, Li R S, Nong W Y, Cheung F K M, Qiu J W, Qian P Y. 2017. Adaptation to deep-sea chemosynthetic environments as revealed by mussel genomes. Nature Ecology & Evolution, 1(5):0121, https://doi.org/10.1038/s41559-017-0121.
Van Dover C L, German C R, Speer K G, Parson L M, Vrijenhoek R C. 2002. Evolution and biogeography of deep-sea vent and seep invertebrates. Science, 295(5558):1 253-1 257, https://doi.org/10.1126/science.1067361.
Van Lint P, Libert C. 2007. Chemokine and cytokine processing by matrix metalloproteinases and its effect on leukocyte migration and inflammation. Journal of Leukocyte Biology, 82(6): 1 375-1 381, https://doi.org/10.1189/jlb.0607338.
Verma R P, Hansch C. 2007. Matrix metalloproteinases(MMPs): chemical-biological functions and (Q)SARs.Bioorganic & Medicinal Chemistry, 15(6): 2 223-2 268, https://doi.org/10.1016/j.bmc.2007.01.011.
Wentrup C, Wendeberg A, Huang J Y, Borowski C, Dubilier N. 2013. Shift from widespread symbiont infection of host tissues to specific colonization of gills in juvenile deepsea mussels. The ISME Journal, 7(6): 1 244-1 247, https://doi.org/10.1038/ismej.2013.5.
Won Y J, Hallam S J, O’Mullan G D, Pan I L, Buck K R, Vrijenhoek R C. 2003. Environmental acquisition of thiotrophic endosymbionts by deep-sea mussels of the genus Bathymodiolus. Applied and Environmental Microbiology, 69(11): 6 785-6 792, https://doi.org/10.1128/aem.69.11.6785-6792.2003.
Wong Y H, Sun J, He L S, Chen L G, Qiu J W, Qian P Y. 2015.High-throughput transcriptome sequencing of the cold seep mussel Bathymodiolus platifrons. Scientific Reports, 5(1): 16597, https://doi.org/10.1038/srep16597.
Wu C L, Söderhäll K, Söderhäll I. 2011. Two novel ficolin-like proteins act as pattern recognition receptors for invading pathogens in the freshwater crayfish Pacifastacus leniusculus. Proteomics, 11(11): 2 249-2 264, https://doi.org/10.1002/pmic.201000728.
Xu J C, Jiang S, Li Y Q, Li M J, Cheng Q, Zhao D P, Yang B, Jia Z H, Wang L L, Song L S. 2016. Caspase-3 serves as an intracellular immune receptor specific for lipopolysaccharide in oyster Crassostrea gigas.Developmental & Comparative Immunology, 61: 1-12, https://doi.org/10.1016/j.dci.2016.03.015.
Zheng P, Wang M X, Li C L, Sun X Q, Wang X C, Sun Y, Sun S. 2017. Insights into deep-sea adaptations and hostsymbiont interactions: a comparative transcriptome study on Bathymodiolus mussels and their coastal relatives.Molecular Ecology, 26(19): 5 133-5 148, https://doi.org/10.1111/mec.14160.
Copyright © Haiyang Xuebao