Cite this paper:
ZHONG Zhaoshan, WANG Minxiao, CHEN Hao, ZHENG Ping, LI Chaolun. Gametogenesis and reproductive traits of the cold-seep mussel Gigantidas platifrons in the South China Sea[J]. Journal of Oceanology and Limnology, 2020, 38(4): 1304-1318

Gametogenesis and reproductive traits of the cold-seep mussel Gigantidas platifrons in the South China Sea

ZHONG Zhaoshan1,3, WANG Minxiao1,2,4, CHEN Hao1,4, ZHENG Ping5, LI Chaolun1,2,3,4
1 CODR and KLMEES, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China;
2 Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China;
3 University of Chinese Academy of Sciences, Beijing 100049, China;
4 Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China;
5 Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
Gigantidas platifrons (Bivalvia, Mytilidae), the dominant species at the Formosa cold seep, relies on methanotrophic symbionts dwelling in its gills for nutrition. The reproductive patterns of G. platifrons provide fundamental information for understanding the population recruitment of this species. However, we know very little about important processes in reproduction, such as gametogenesis and symbiotic bacteria transmission. To this end, we described the developmental patterns of the gonads from nine surveys and juvenile length-distribution from one-year larval traps and detected bacteria in gonad from G. platifrons samples. Our results show that G. platifrons is a functionally dioecious species. The reproduction of G. platifrons is discontinuous, with spawning maturity peak around the fourth quarter of the year. The seasonal reproduction of G. platifrons was further supported by the unimodal shell length distribution of the trapped juvenile mussels. Given the small oocyte size (48.99-70.14 μm), which was comparable to that of coastal mussels, we proposed that G. platifrons developed via a free-living, planktotrophic larval stage before settlement. The blooms at the water surface can also supply the development of the planktonic larvae of G. platifrons. Meanwhile, no bacteria were observed in gonads, suggesting a horizontal symbiont transfer mode in this mussel. Collectively, these results provide fundamental biological information for an improved understanding of the early life history of G. platifrons in the Formosa cold seep.
Key words:    cold seep|gametogenesis|Gigantidas platifrons|reproductive|South China Sea (SCS)   
Received: 2020-01-14   Revised: 2020-03-31
PDF (4505 KB) Free
Print this page
Add to favorites
Email this article to others
Articles by ZHONG Zhaoshan
Articles by WANG Minxiao
Articles by CHEN Hao
Articles by ZHENG Ping
Articles by LI Chaolun
Arellano S M, Van Gaest A L, Johnson S B, Vrijenhoek R C, Young C M. 2014. Larvae from deep-sea methane seeps disperse in surface waters. Proceedings of the Royal Society B: Biological Sciences, 281(1786): 20133276.
Arellano S M, Young C M. 2009. Spawning, development, and the duration of larval life in a deep-sea cold-seep mussel.The Biological Bulletin, 216(2): 149-162.
Barry J P, Buck K R, Kochevar R K, Nelson D C, Fujiwara Y, Goffredi S K, Hashimoto J. 2002. Methane-based symbiosis in a mussel, Bathymodiolus platifrons, from cold seeps in Sagami Bay, Japan. Invertebrate Biology, 121(1): 47-54.
Bayne B L. 1976. The biology of mussel larvae. In: Bayne B L ed. Marine Mussels: Their Ecology and Physiology.Cambridge University Press, Cambridge. p.81-120.
Bayrakci G, Scalabrin C, Dupré S, Leblond I, Tary J B, Lanteri N, Augustin J M, Berger L, Cros E, Ogor A, Tsabaris C, Lescanne M, Géli L. 2014. Acoustic monitoring of gas emissions from the seafloor. Part Ⅱ: a case study from the Sea of Marmara. Marine Geophysical Research, 35(3):211-229.
Berg C J. 1985. Reproductive strategies of mollusks from abyssal hydrothermal vent communities. Bulletin of the Biological Society of Washington, 6: 185-197.
Borcherding J. 1991. The annual reproductive cycle of the freshwater mussel Dreissena polymorpha Pallas in lakes.Oecologia, 87(2): 208-218.
Brown R A. 1984. Geographical variations in the reproduction of the horse mussel, Modiolus modiolus (Mollusca: Bivalvia). Journal of the Marine Biological Association of the United Kingdom, 64(4): 751-770.
Campbell S A. 1970. The carotenoid pigments of Mytilus edulis and Mytilus californianus. Comparative Biochemistry and Physiology, 32(1): 97-115.
Chen H, Wang M X, Zhang H, Wang H, Lv Z, Zhou L, Zhong Z S, Lian C, Cao L, Li C L. 2019. An LRR-domain containing protein identified in Bathymodiolus platifrons serves as intracellular recognition receptor for the endosymbiotic methane-oxidation bacteria. Fish & Shellfish Immunology, 93: 354-360.
Colaço A, Martins I, Laranjo M, Pires L, Leal C, Prieto C, Costa V, Lopes H, Rosa D, Dando P R, Serrão-Santos R. 2006.Annual spawning of the hydrothermal vent mussel, Bathymodiolus azoricus, under controlled aquarium, conditions at atmospheric pressure. Journal of Experimental Marine Biology and Ecology, 333(2): 166-171.
Comtet T, Desbruyères D. 1998. Population structure and recruitment in mytilid bivalves from the Lucky Strike and Menez Gwen hydrothermal vent fields (37°17'N and 37°50'N on the Mid-Atlantic Ridge). Marine Ecology Progress Series, 163: 165-177.
Corliss J B, Dymond J, Gordon L I, Edmond J M, von Herzen R P, Ballard R D, Green K, Williams D, Bainbridge A, Crane K, van Andel T H. 1979. Submarine thermal springs on the Galápagos Rift. Science, 203(4385): 1 073-1 083.
Distel D L, Baco A R, Chuang E, Morrill W, Cavanaugh C, Smith C R. 2000. Do mussels take wooden steps to deepsea vents? Nature, 403(6711): 725-726.
Dixon D R, Lowe D M, Miller P I, Villemin G R, Colaço A, Serrão-Santos R, Dixon L R J. 2006. Evidence of seasonal reproduction in the Atlantic vent mussel Bathymodiolus azoricus, and an apparent link with the timing of photosynthetic primary production. Journal of the Marine Biological Association of the United Kingdom, 86(6):1 363-1 371.
Du Z F, Zhang X, Luan Z D, Wang M X, Xi S C, Li L F, Wang B, Cao L, Lian C, Li C L, Yan J. 2018. In situ raman quantitative detection of the cold seep vents and fluids in the chemosynthetic communities in the South China Sea.Geochemistry, Geophysics, Geosystems, 19(7): 2 049-2 061.
Dubilier N, Windoffer R, Giere O. 1998. Ultrastructure and stable carbon isotope composition of the hydrothermal vent mussels Bathymodiolus brevior and B. sp. affinis brevior from the North Fiji Basin, western Pacific. Marine Ecology Progress Series, 165: 187-193.
Duperron S, Bergin C, Zielinski F, Blazejak A, Pernthaler A, McKiness Z P, DeChaine E, Cavanaugh C M, Dubilier N. 2006. A dual symbiosis shared by two mussel species, Bathymodiolus azoricus and Bathymodiolus puteoserpentis (Bivalvia: Mytilidae), from hydrothermal vents along the northern Mid-Atlantic Ridge.Environmental Microbiology, 8(8): 1 441-1 447.
Eckelbarger K J, Watling L. 1995. Role of phylogenetic constraints in determining reproductive patterns in deepsea invertebrates. Invertebrate Biology, 114(3): 256-269.
Feng D, Chen D F. 2015. Authigenic carbonates from an active cold seep of the northern South China Sea: new insights into fluid sources and past seepage activity. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 122:74-83.
Fisher C R, Brooks J M, Vodenichar J S, Zande J M, Childress J J, Burke Jr R A. 1993. The co-occurrence of methanotrophic and chemoautotrophic sulfur-oxidizing bacterial symbionts in a deep-sea mussel. Marine Ecology, 14(4): 277-289.
Gaudron S M, Demoyencourt E, Duperron S. 2012.Reproductive traits of the cold-seep symbiotic mussel Idas modiolaeformis: gametogenesis and larval biology.The Biological Bulletin, 222(1): 6-16.
Guo X Y, Li C L. 2017. Biochemical components of cold seep mussel Bathymodiolus platifrons from South China Sea and comparison with hydrothermal vent and offshore mussels. Marine Sciences, 41(6): 65-71. (in Chinese with English abstract)
Hashimoto J, Okutani T. 1994. Four new mytilid mussels associated with deep sea chemosynthetic communities around Japan. Venus, 53(2): 61-83.
Hessler R R, Smithey W M, Boudrias M A, Keller C H, Lutz R A, Childress J J. 1988. Temporal change in megafauna at the Rose Garden hydrothermal vent (Galapagos Rift;eastern tropical Pacific). Deep Sea Research Part A.Oceanographic Research Papers, 35(10-11): 1 681-1 709.
Jantz B, Neumann D. 1998. Growth and reproductive cycle of the zebra mussel in the River Rhine as studied in a river bypass. Oecologia, 114(2): 213-225.
Jiang Z Y, Wang Y S, Sun F L. 2014. Spatial structure of eukaryotic ultraplankton community in the northern South China Sea. Biologia, 69(5): 557-565.
Jones W J, Won Y J, Maas PAY, Smith P J, Lutz R A, Vrijenhoek R C. 2006. Evolution of habitat use by deep-sea mussels.Marine Biology, 148(4): 841-851.
Jørgensen C B. 1981. Mortality, growth, and grazing impact of a cohort of bivalve larvae, Mytilus edulis L. Ophelia, 20(2): 185-192.
Kádár E, Bettencourt R, Costa V, Santos R S, Lobo-da-Cunha A, Dando P. 2005. Experimentally induced endosymbiont loss and re-acquirement in the hydrothermal vent bivalve Bathymodiolus azoricus. Journal of Experimental Marine Biology and Ecology, 318(1): 99-110.
Kennicutt Ⅱ M C, Brooks J M, Bidigare R R, Fay R R, Wade T L, McDonald T J. 1985. Vent-type taxa in a hydrocarbon seep region on the Louisiana slope. Nature, 317(6035):351-353.
Khripounoff A, Alberic P. 1991. Settling of particles in a hydrothermal vent field (East Pacific Rise 13°N) measured with sediment traps. Deep Sea Research Part A.Oceanographic Research Papers, 38(6): 729-744.
Laming S R, Duperron S, Cunha M R, Gaudron S M. 2014.Settled, symbiotic, then sexually mature: adaptive developmental anatomy in the deep-sea, chemosymbiotic mussel Idas modiolaeformis. Marine Biology, 161(6):1 319-1 333.
Laming S R, Duperron S, Gaudron S M, Hilário A, Cunha M R. 2015. Adapted to change: the rapid development of symbiosis in newly settled, fast-maturing chemosymbiotic mussels in the deep sea. Marine Environmental Research, 112: 100-112.
Laming S R, Gaudron S M, Duperron S. 2018. Lifecycle ecology of deep-sea chemosymbiotic mussels: a review.Frontiers in Marine Science, 5: 282.
Le Pennec M, Beninger P G. 1997. Ultrastructural characteristics of spermatogenesis in three species of deep-sea hydrothermal vent mytilids. Canadian Journal of Zoology, 75(2): 308-316.
Le Pennec M, Beninger P G. 2000. Reproductive characteristics and strategies of reducing-system bivalves. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 126(1): 1-16.
Lee S Y. 1988. The reproductive cycle and sexuality of the green mussel Perna viridis (L.) (Bivalvia: Mytilacea) in Victoria Harbour, Hong Kong. Journal of Molluscan Studies, 54(3): 317-323.
Levin L A, Baco A R, Bowden D A, Colaco A, Cordes E E, Cunha M R, Demopoulos A W J, Gobin J, Grupe B M, Le J, Metaxas A, Netburn A N, Rouse G W, Thurber A R, Tunnicliffe V, Van Dover C L, Vanreusel A, Watling L. 2016. Hydrothermal vents and methane seeps: rethinking the sphere of influence. Frontiers in Marine Science, 3: 72.
Lorion J, Duperron S, Gros O, Cruaud C, Samadi S. 2009.Several deep-sea mussels and their associated symbionts are able to live both on wood and on whale falls.Proceedings of the Royal Society B: Biological Sciences, 276(1654): 177-185.
Lorion J, Kiel S, Faure B, Kawato M, Ho S Y W, Marshall B, Tsuchida S, Miyazaki J I, Fujiwara Y. 2013. Adaptive radiation of chemosymbiotic deep-sea mussels.Proceedings of the Royal Society B: Biological Sciences, 280(1770): 20131243.
Lutz R A, Jablonski D, Rhoads D C, Turner R D. 1980. Larval dispersal of a deep-sea hydrothermal vent bivalve from the Galápagos Rift. Marine Biology, 57(2): 127-133.
Lutz R A, Kennish M J. 1993. Ecology of deep-sea hydrothermal vent communities: a review. Reviews of Geophysics, 31(3): 211-242.
Maoka T. 2011. Carotenoids in marine animals. Marine Drugs, 9(2): 278-293.
Mikhailov A T, Torrado M, Méndez J. 1995. Sexual differentiation of reproductive tissue in bivalve molluscs:identification of male associated polypeptide in the mantle of Mytilus galloprovincialis Lmk. International Journal of Developmental Biology, 39(3): 545-548.
Miyazaki J I, Beppu S, Kajio S, Dobashi A, Kawato M, Fujiwara Y, Hirayama H. 2013. Dispersal ability and environmental adaptability of deep-sea mussels Bathymodiolus (Mytilidae: Bathymodiolinae). Open Journal of Marine Science, 3(1): 31-39.
Miyazaki J I, de Oliveira Martins L, Fujita Y, Matsumoto H, Fujiwara Y. 2010. Evolutionary process of deep-sea Bathymodiolus mussels. PLoS One, 5(4): e10363.
Momma H, Mitsuzawa K, Kaiho Y, Iwase R, Fujiwara Y. 1995.Long-term deep sea floor observation off Hatsushima Island in Sagami Bay: one year in the Calyptogena soyoae clam colony. JAMSTEC Journal of Deep Sea Research, 11: 249-268.
Myrand B, Guderley H, Himmelman J H. 2000. Reproduction and summer mortality of blue mussels Mytilus edulis in the Magdalen Islands, southern Gulf of St. Lawrence.Marine Ecology Progress Series, 197: 193-207.
Ndah A B, Dagar L, Becek K, Odihi J O. 2019. Spatio-temporal dynamics of phytoplankton functional groups in the South China Sea and their relative contributions to marine primary production. Regional Studies in Marine Science, 29: e100598.
Newell R I, Hilbish T J, Koehn R K, Newell C J. 1982.Temporal variation in the reproductive cycle of Mytilus edulis L. (Bivalvia, Mytilidae) from localities on the east coast of the United States. The Biological Bulletin, 162(3):299-310.
Niu M Y, Liang Q Y, Feng D, Wang F P. 2017. Ecosystems of cold seeps in the South China Sea. In: Kallmeyer J ed.Life at Vents and Seeps. De Gruyter, Berlin, Boston.p.139-160.
Ockelmann K W, Dinesen G E. 2010. Life on wood-the carnivorous deep-sea mussel Idas argenteus(Bathymodiolinae, Mytilidae, Bivalvia). Marine Biology Research, 7(1): 71-84.
Philip B T, Denny A R, Solomon E A, Kelley D S. 2016. Timeseries measurements of bubble plume variability and water column methane distribution above Southern Hydrate Ridge, Oregon. Geochemistry, Geophysics, Geosystems, 17(3): 1 182-1 196.
Picazo D R, Dagan T, Ansorge R, Petersen J M, Dubilier N, Kupczok A. 2019. Horizontally transmitted symbiont populations in deep-sea mussels are genetically isolated.The ISME Journal, 13(12): 2 954-2 968
Pieters H, Kluytmans J H, Zandee D I, Cadée G C. 1980.Tissue composition and reproduction of Mytilus edulis in relation to food availability. Netherlands Journal of Sea Research, 14(3-4): 349-361.
Rossi G S, Tunnicliffe V. 2017. Trade-offs in a high CO2 habitat on a subsea volcano: condition and reproductive features of a bathymodioline mussel. Marine Ecology Progress Series, 574: 49-64.
Salerno J L, Macko S A, Hallam S J, Bright M, Won Y J, McKiness Z, van Dover C L. 2005. Characterization of symbiont populations in life-history stages of mussels from chemosynthetic environments. The Biological Bulletin, 208(2): 145-155.
Sayavedra L, Ansorge R, Rubin-Blum M, Leisch N, Dubilier N, Petersen J M. 2019. Horizontal acquisition followed by expansion and diversification of toxin-related genes in deep-sea bivalve symbionts. BioRxiv, 605386,
Schweiggert R M, Carle R. 2016. Carotenoid production by bacteria, microalgae, and fungi. In: Kaczor A, Baranska M eds. Carotenoids: Nutrition, Analysis and Technology.Wiley, Washington. p.217-240.
Seed R. 1969. The ecology of Mytilus edulis L.(Lamellibranchiata) on exposed rocky shores: I. Breeding and settlement. Oecologia, 3(3): 277-316.
Smith C R, Amy R B. 2003. Ecology of whale falls at the deepsea floor. Oceanography and Marine Biology, 41: 311-354.
Sun J, Zhang Y, Xu T, Zhang Y, Mu H W, Zhang Y J, Lan Y, Fields C J, Hui J H L, Zhang W P, Li R S, Nong W Y, Cheung F K M, Qiu J W, Qian P Y. 2017a. Adaptation to deep-sea chemosynthetic environments as revealed by mussel genomes. Nature Ecology & Evolution, 1(5): 0121.
Sun Y, Wang M X, Li L L, Zhou L, Wang X C, Zheng P, Yu H Y, Li C L, Sun S. 2017b. Molecular identification of methane monooxygenase and quantitative analysis of methanotrophic endosymbionts under laboratory maintenance in Bathymodiolus platifrons from the South China Sea. PeerJ, 5(2): e3565.
Takishita K, Takaki Y, Chikaraishi Y, Ikuta T, Ozawa G, Yoshida T, Ohkouchi N, Fujikura K. 2017. Genomic evidence that methanotrophic endosymbionts likely provide deep-sea Bathymodiolus mussels with a sterol intermediate in cholesterol biosynthesis. Genome Biology and Evolution, 9(5): 1 148-1 160.
Thubaut J, Puillandre N, Faure B, Cruaud C, Samadi S. 2013.The contrasted evolutionary fates of deep-sea chemosynthetic mussels (Bivalvia, Bathymodiolinae).Ecology and Evolution, 3(14): 4 748-4 766.
Turner R D, Lutz R. 1984. Growth and distribution of mollusks at deep-sea vents and seeps. Oceanus, 27(3): 54-62.
Tyler P A, Grant A, Pain S L, Gage J D. 1982. Is annual reproduction in deep-sea echinoderms a response to variability in their environment? Nature, 300(5894): 747-750.
Tyler P A, Marsh L, Baco-Taylor A, Smith C R. 2009. Protandric hermaphroditism in the whale-fall bivalve mollusc Idas washingtonia. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 56(19-20): 1 689-1 699.
Tyler P A, Young C M, Dolan E, Arellano S M, Brooke S D, Baker M. 2007. Gametogenic periodicity in the chemosynthetic cold-seep mussel “Bathymodiolus” childressi. Marine Biology, 150(5): 829-840.
Tyler P A, Young C M. 1999. Reproduction and dispersal at vents and cold seeps. Journal of the Marine Biological Association of the United Kingdom, 79(2): 193-208.
Van Dover C L, German C R, Speer K G, Parson L M, Vrijenhoek R C. 2002. Evolution and biogeography of deep-sea vent and seep invertebrates. Science, 295(5558): 1 253-1 257.
Wang H, Zhang H, Wang M X, Chen H, Lian C, Li C L. 2019.Comparative transcriptomic analysis illuminates the hostsymbiont interactions in the deep-sea mussel Bathymodiolus platifrons. Deep Sea Research Part I:Oceanographic Research Papers, 151: 103082.
Wang X C. 2018. Nutritional Sources Analysis and the HeavyMetal Enrichment of the Macrofauna from the Deep-Sea Chemotrophic Ecosystem. Institute of Oceanology, Chinese Academy of Sciences, Qingdao. p.28-34. (in Chinese with English abstract)
Wang Y, Kang J H, Liang Q Y, He X B, Wang J J, Lin M. 2018.Characteristics of phytoplankton communities and their biomass variation in a gas hydrate drilling area in the northern South China Sea. Marine Pollution Bulletin, 133: 606-615.
Won Y J, Hallam S J, O’Mullan G D, Pan I L, Buck K R, Vrijenhoek R C. 2003. Environmental acquisition of thiotrophic endosymbionts by deep-sea mussels of the genus Bathymodiolus. Applied and Environmental Microbiology, 69(11): 6 785-6 792.
Xu T, Feng D, Tao J, Qiu J W. 2019. A new species of deep-sea mussel (Bivalvia: Mytilidae: Gigantidas) from the South China Sea: morphology, phylogenetic position, and gillassociated microbes. Deep Sea Research Part I:Oceanographic Research Papers, 146: 79-90.
Xu T, Sun J, Watanabe H K, Chen C, Nakamura M, Ji R B, Feng D, Lv J, Wang S, Bao Z M, Qian P Y, Qiu J W. 2018.Population genetic structure of the deep-sea mussel Bathymodiolus platifrons (Bivalvia: Mytilidae) in the Northwest Pacific. Evolutionary Applications, 11(10):1 915-1 930.
Young C M, He R Y, Emlet R B, Li Y Z, Qian H, Arellano S M, Van Gaest A, Bennett K C, Wolf M, Smart T I, Rice M E. 2012. Dispersal of deep-sea larvae from the intraAmerican seas: simulations of trajectories using ocean models. Integrative and Comparative Biology, 52(4):483-496.
Yu J J, Wang M X, Liu B Z, Yue X, Li C L. 2019. Gill symbionts of the cold-seep mussel Bathymodiolus platifrons:composition, environmental dependency and immune control. Fish & Shellfish Immunology, 86: 246-252.
Zhang X, Du Z F, Luan Z D, Wang X J, Xi S C, Wang B, Li L F, Lian C, Yan J. 2017. In situ Raman detection of gas hydrates exposed on the seafloor of the South China Sea.Geochemistry, Geophysics, Geosystems, 18(10): 3 700-3 713.
Zheng P, Wang M X, Li C L, Sun X Q, Wang X C, Sun Y, Sun S. 2017. Insights into deep-sea adaptations and hostsymbiont interactions: a comparative transcriptome study on Bathymodiolus mussels and their coastal relatives.Molecular Ecology, 26(19): 5 133-5 148.
Zhou L, Cao L, Wang X C, Wang M X, Wang H N, Zhong Z S, Xu Z, Chen H, Li L L, Li M N, Wang H, Zhang H, Lian C, Sun Y, Li C L. 2020. Metal adaptation strategies of deepsea Bathymodiolus mussels from a cold seep and three hydrothermal vents in the West Pacific. Science of the Total Environment, 707: 136046.
Copyright © Haiyang Xuebao