Cite this paper:
GAO Yongli, MU Mu, ZHANG Kun. Impacts of parameter uncertainties on deep chlorophyll maximum simulation revealed by the CNOP-P approach[J]. Journal of Oceanology and Limnology, 2020, 38(5): 1382-1393

Impacts of parameter uncertainties on deep chlorophyll maximum simulation revealed by the CNOP-P approach

GAO Yongli1,2,3, MU Mu1,4, ZHANG Kun1,5,6
1 Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China;
3 College of Science, China University of Petroleum(East China), Qingdao 266580, China;
4 Institute of Atmospheric Sciences, Fudan University, Shanghai 200433, China;
5 Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China;
6 Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
Abstract:
Parameter uncertainty is a primary source of uncertainty in ocean ecosystem simulations. The deep chlorophyll maximum (DCM) is a ubiquitous ecological phenomenon in the ocean. Using a theoretical nutrients-phytoplankton model and the conditional nonlinear optimal perturbation approach related to parameters, we investigated the effects of parameter uncertainties on DCM simulations. First, the sensitivity of single parameter was analyzed. The sensitivity ranking of 10 parameters was obtained by analyzing the top four specifically. The most sensitive parameter (background turbidity) affects the light supply for DCM formation, whereas the other three parameters (nutrient content of phytoplankton, nutrient recycling coefficient, and vertical turbulent diffusivity) control nutrient supply. To explore the interactions among different parameters, the sensitivity of multiple parameters was further studied by examining combinations of four parameters. The results show that background turbidity is replaced by the phytoplankton loss rate in the optimal parameter combination. In addition, we found that interactions among these parameters are responsible for such differences. Finally, we found that reducing the uncertainties of sensitive parameters could improve DCM simulations remarkably. Compared with the sensitive parameters identified in the single parameter analysis, reducing parameter uncertainties in the optimal combination produced better model performance. This study shows the importance of nonlinear interactions among various parameters in identifying sensitive parameters. In the future, the conditional nonlinear optimal perturbation approach related to parameters, especially optimal parameter combinations, is expected to greatly improve DCM simulations in complex ecosystem models.
Key words:    deep chlorophyll maximum (DCM) simulation|parameter uncertainty|conditional nonlinear optimal perturbation related to parameters (CNOP-P)|sensitivity   
Received: 2020-01-13   Revised: 2020-02-21
Tools
PDF (1303 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by GAO Yongli
Articles by MU Mu
Articles by ZHANG Kun
References:
Barbiero R P, Tuchman M L. 2001. Results from the U.S.EPA's biological open water surveillance program of the Laurentian Great Lakes:1. Introduction and phytoplankton results. Journal of Great Lakes Research, 27(2):134-154, https://doi.org/10.1016/s0380-1330(01)70628-4.
Beckmann A, Hense I. 2007. Beneath the surface:characteristics of oceanic ecosystems under weak mixing conditions-a theoretical investigation. Progress in Oceanography, 75(4):771-796, https://doi.org/10.1016/j.pocean.2007.09.002.
Boyce D G, Lewis M R, Worm B. 2010. Global phytoplankton decline over the past century. Nature, 466(7306):591-596, https://doi.org/10.1038/nature09268.
Brandini F P, Nogueira M Jr, Simião M, Codina J C U, Noernberg M A. 2014. Deep chlorophyll maximum and plankton community response to oceanic bottom intrusions on the continental shelf in the South Brazilian Bight. Continental Shelf Research, 89:61-75, https://doi.org/10.1016/j.csr.2013.08.002.
Christian J R, Verschell M A, Murtugudde R, Busalacchi A J, McClain C R. 2002. Biogeochemical modelling of the tropical Pacific Ocean. I:Seasonal and interannual variability. Deep Sea Research II:Topical Studies in Oceanography, 49(1-3):509-543, https://doi.org/10.1016/S0967-0645(01)00110-2.
Chu P C, Ivanov L M, Margolina T M. 2007. On non-linear sensitivity of marine biological models to parameter variations. Ecological Modelling, 206(3-4):369-382, https://doi.org/10.1016/j.ecolmodel.2007.04.006.
Doney S C, Ruckelshaus M, Duffy J E, Barry J P, Chan F, English C A, Galindo H M, Grebmeier J M, Hollowed A B, Knowlton N, Polovina J, Rabalais N N, Sydeman W J, Talley L D. 2012. Climate change impacts on marine ecosystems. Annual Review of Marine Science, 4:11-37, https://doi.org/10.1146/annurev-marine-041911-111611.
Evensen G, Dee D P, Schröter J. 1998. Parameter estimation in dynamical models. In:Chassignet E P, Verron J eds.Ocean Modeling and Parameterization. Springer, Dordrecht. p.373-398, https://doi.org/10.1007/978-94-011-5096-5_16.
Fee E J. 1976. The vertical and seasonal distribution of chlorophyll in lakes of the Experimental Lakes Area, northwestern Ontario:implications for primary production estimates. Limnology and Oceanography, 21(6):767-783, https://doi.org/10.4319/lo.1976.21.6.0767.
Fennel K, Losch M, Schröter J, Wenzel M. 2001. Testing a marine ecosystem model:sensitivity analysis and parameter optimization. Journal of Marine Systems, 28(1-2):45-63.https://doi.org/10.1016/S0924-7963(00)00083-X.
Fiechter J. 2012. Assessing marine ecosystem model properties from ensemble calculations. Ecological Modelling, 242:164-179, https://doi.org/10.1016/j.ecolmodel.2012.05.016.
Fulton E A, Smith A D M, Johnson C R. 2003. Effect of complexity on marine ecosystem models. Marine Ecology Progress Series, 253:1-16, https://doi.org/10.3354/meps253001.
Harrison J W, Smith R E H. 2011. Deep chlorophyll maxima and UVR acclimation by epilimnetic phytoplankton.Freshwater Biology, 56(5):980-992, https://doi.org/10.1111/j.1365-2427.2010.02541.x.
Heinle A, Slawig T. 2013. Internal dynamics of NPZD type ecosystem models. Ecological Modelling, 254:33-42, https://doi.org/10.1016/j.ecolmodel.2013.01.012.
Huisman J, Pham Thi N N, Karl D M, Sommeijer B. 2006.Reduced mixing generates oscillations and chaos in the oceanic deep chlorophyll maximum. Nature, 439(7074):322-325, https://doi.org/10.1038/nature04245.
Kantha L H. 2004. A general ecosystem model for applications to primary productivity and carbon cycle studies in the global oceans. Ocean Modelling, 6(3-4):285-334, https://doi.org/10.1016/S1463-5003(03)00022-2.
Kirk J T O. 1994. Light and Photosynthesis in Aquatic Ecosystems. 2nd edn. Cambridge University Press, Cambridge, UK, https://doi.org/10.1017/CBO9780511623370.
Klausmeier C A, Litchman E. 2001. Algal games:the vertical distribution of phytoplankton in poorly mixed water columns. Journal of Oceanology and Limnology, 46(8):1 998-2 007, https://doi.org/10.4319/lo.2001.46.8.1998.
Laufkötter C, Vogt M, Gruber N, Aita-Noguchi M, Aumont O, Bopp L, Buitenhuis E, Doney S C, Dunne J, Hashioka T, Hauck J, Hirata T, John J, Le Quéré C, Lima I D, Nakano H, Seferian R, Totterdell I, Vichi M, Völker C. 2015. Drivers and uncertainties of future global marine primary production in marine ecosystem models. Biogeosciences, 12(23):6 955-6 984, https://doi.org/10.5194/bg-12-6955-2015.
Liccardo A, Fierro A, Iudicone D, Bouruet-Aubertot P, Dubroca L. 2013. Response of the deep chlorophyll maximum to fluctuations in vertical mixing intensity.Progress in Oceanography, 109:33-46, https://doi.org/10.1016/j.pocean.2012.09.004.
Löptien U. 2011. Steady states and sensitivities of commonly used pelagic ecosystem model components. Ecological Modelling, 222(8):1 376-1 386, https://doi.org/10.1016/j.ecolmodel.2011.02.005.
Losa S N, Kivman G A, Ryabchenko V A. 2004. Weak constraint parameter estimation for a simple ocean ecosystem model:what can we learn about the model and data? Journal of Marine Systems, 45(1-2):1-20, https://doi.org/10.1016/j.jmarsys.2003.08.005.
Mu M, Duan W, Wang Q, Zhang R. 2010. An extension of conditional nonlinear optimal perturbation approach and its applications. Nonlinear Processes in Geophysics, 17(2):211-220, https://doi.org/10.5194/npg-17-211-2010.
Navarro G, Ruiz J. 2013. Hysteresis conditions the vertical position of deep chlorophyll maximum in the temperate ocean. Global Biogeochemical Cycles, 27(4):1 013-1 022, https://doi.org/10.1002/gbc.20093.
Paquette C, Beisner B E. 2018. Interaction effects of zooplankton and CO2 on phytoplankton communities and the deep chlorophyll maximum. Freshwater Biology, 63(3):278-292, https://doi.org/10.1111/fwb.13063.
Saltelli A, Ratto M, Tarantola S, Campolongo F. 2005.Sensitivity analysis for chemical models. Chemical Reviews, 105(7):2 811-2 828, https://doi.org/10.1021/cr040659d.
Schartau M, Wallhead P, Hemmings J, Löptien U, Kriest I, Krishna S, Ward B A, Slawig T, Oschlies A. 2017.Reviews and syntheses:parameter identification in marine planktonic ecosystem modelling. Biogeosciences, 14(6):1 647-1 701, https://doi.org/10.5194/bg-14-1647-2017.
Storn R, Price K. 1997. Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 11(4):341-359, https://doi.org/10.1023/a:1008202821328.
Sun G D, Mu M. 2014. The analyses of the net primary production due to regional and seasonal temperature differences in eastern China using the LPJ model.Ecological Modelling, 289:66-76, http://doi.org/10.1016/j.ecolmodel.2014.06.021.
Sun G D, Mu M. 2016. A new approach to identify the sensitivity and importance of physical parameters combination within numerical models using the LundPotsdam-Jena (LPJ) model as an example. Theoretical and Applied Climatology, 128(3-4):587-601, https://doi.org/10.1007/s00704-015-1690-9.
Sun G D, Mu M. 2017. Projections of soil carbon using the combination of the CNOP-P method and GCMs from CMIP5 under RCP4.5 in north-south transect of eastern China. Plant and Soil, 413(1):243-260, https://doi.org/10.1007/s11104-016-3098-4.
Wang Q, Mu M. 2015. A new application of conditional nonlinear optimal perturbation approach to boundary condition uncertainty. Journal of Geophysical Research:Oceans, 120(12):7 979-7 996, https://doi.org/10.1002/2015JC011095.
Wang Q, Tang Y M, Dijkstra H A. 2017. An optimization strategy for identifying parameter sensitivity in atmospheric and oceanic models. Monthly Weather Review, 145(8):3 293-3 305, https://doi.org/10.1175/MWR-D-16-0393.1.
Weir B, Miller R N, Spitz Y H. 2013. Implicit estimation of ecological model parameters. Bulletin of Mathematical Biology, 75(2):223-257, https://doi.org/10.1007/s11538-012-9801-6.
Yoshiyama K, Mellard J P, Litchman E, Klausmeier C A. 2009.Phytoplankton competition for nutrients and light in a stratified water column. The American Naturalist, 174(2):190-203, https://doi.org/10.1086/600113.
Yuan S J, Zhang H Z, Li M, Mu B. 2019. CNOP-P-based parameter sensitivity for double-gyre variation in ROMS with simulated annealing algorithm. Journal of Oceanology and Limnology, 37(3):957-967, https://doi.org/10.1007/s00343-019-7266-2.
Copyright © Haiyang Xuebao