Cite this paper:
ZHU Hongli, DU Long, ZHANG Zhaofeng, SUN Weidong. Calcium isotopic signatures of depleted mid-ocean ridge basalts from the northeastern Pacific[J]. Journal of Oceanology and Limnology, 2020, 38(5): 1476-1487

Calcium isotopic signatures of depleted mid-ocean ridge basalts from the northeastern Pacific

ZHU Hongli1,2,3, DU Long4, ZHANG Zhaofeng5, SUN Weidong1,2,3,6
1 Center of Deep Sea Research, Institute of Oceanography, Chinese Academy of Sciences, Qingdao 266071, China;
2 Laboratory for Marine Mineral Resources, Pilot National Laboratory for Marine Science and Technology(Qingdao), Qingdao 266237, China;
3 Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China;
4 College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China;
5 State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China;
6 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract:
A number of high-temperature processes (e.g., melt-rock reactions, metasomatism, partial melting) can produce significant Ca isotopic fractionation and heterogeneity in the mantle, but the mechanism for such fractionation remains obscure. To investigate the effect of mantle partial melting on Ca isotopic fractionation, we reported high-precision Ca isotopic compositions of depleted mid-ocean ridge basalts (MORBs) from the East Pacific Rise and Ecuador Rift in the northeastern Pacific. The δ44/40Ca of these MORB samples exhibit a narrow variation from 0.84‰ to 0.88‰ with an average of 0.85‰±0.03‰, which are similar to those of reported MORBs (0.83‰±0.11‰) and back-arc basin basalts (BABBs, 0.80‰±0.08‰) in literature, but are lower than the estimate value for the bulk silicate Earth (BSE, 0.94‰±0.05‰). The low δ44/40Ca signatures of MORB samples in this study cannot be caused by fractional crystallization, since intermediate-mafic differentiation has been demonstrated having only limited effects on Ca isotopic fractionation. Instead, the offset of δ44/40Ca between MORBs and the BSE is most likely produced by mantle partial melting. During this process, the light Ca isotopes are preferentially transferred to the melt, while the heavy ones tend to stay in the residue, which is consistent with the fact that δ44/40Ca of melt-depleted peridotites increases with partial melting in literature. The behavior of Ca isotopes during mantle partial melting is closely related to the inter-mineral (Cpx and Opx) Ca isotopic fractionation and melting mineral modes. Mantle partial melting is one of the common processes that can induce lower δ44/40Ca values in basalts and Ca isotopic heterogeneity in Earth's mantle.
Key words:    Ca isotopes|mid-ocean ridge basalts (MORBs)|mantle partial melting|magma differentiation   
Received: 2020-01-19   Revised: 2020-03-09
Tools
PDF (1081 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by ZHU Hongli
Articles by DU Long
Articles by ZHANG Zhaofeng
Articles by SUN Weidong
References:
Amini M, Eisenhauer A, Böhm F, Fietzke J, Bach W, GarbeSchönberg D, Rosner M, Bock B, Lackschewitz K S, Hauff F. 2008. Calcium isotope (δ44/40Ca) fractionation along hydrothermal pathways, Logatchev field (MidAtlantic Ridge, 14°45'N). Geochimica et Cosmochimica Acta, 72(16):4 107-4 122.
Amini M, Eisenhauer A, Böhm F, Holmden C, Kreissig K, Hauff F, Jochum K P. 2009. Calcium Isotopes (δ44/40Ca) in MPI-DING reference glasses, USGS rock powders and various rocks:evidence for Ca isotope fractionation in terrestrial silicates. Geostandards and Geoanalytical Research, 33(2):231-247.
Amsellem E, Moynier F, Pringle E A, Bouvier A, Chen H, Day J M D. 2017. Testing the chondrule-rich accretion model for planetary embryos using calcium isotopes. Earth and Planetary Science Letters, 469:75-83.
Amsellem E, Moynier F, Puchtel I S. 2019. Evolution of the Ca isotopic composition of the mantle. Geochimica et Cosmochimica Acta, 258:195-206.
Antonelli M A, Mittal T, McCarthy A, Tripoli B, Watkins J M, DePaolo D J. 2019a. Ca isotopes record rapid crystal growth in volcanic and subvolcanic systems. Proceedings of the National Academy of Sciences of the United States of America, 116(41):20 315-2 0321.
Antonelli M A, Schiller M, Schauble E A, Mittal T, DePaolo D J, Chacko T, Grew E S, Tripoli B. 2019b. Kinetic and equilibrium Ca isotope effects in high-T rocks and minerals.Earth and Planetary Science Letters, 517:71-82.
Blättler C L, Higgins J A. 2017. Testing Urey's carbonatesilicate cycle using the calcium isotopic composition of sedimentary carbonates. Earth and Planetary Science Letters, 479:241-251.
Charlier B L A, Ginibre C, Morgan D, Nowell G M, Pearson D G, Davidson J P, Ottley C J. 2006. Methods for the microsampling and high-precision analysis of strontium and rubidium isotopes at single crystal scale for petrological and geochronological applications. Chemical Geology, 232(3-4):114-133.
Chen C F, Ciazela J, Li W, Dai W, Wang Z C, Foley S F, Li M, Hu Z C, Liu Y S. 2019a. Calcium isotopic compositions of oceanic crust at various spreading rates. Geochimica et CosmochimicaActa, https://doi.org/10.1016/j.gca.2019.07.008.
Chen C F, Dai W, Wang Z C, Liu Y S, Li M, Becker H, Foley S F. 2019b. Calcium isotope fractionation during magmatic processes in the upper mantle. Geochimica et Cosmochimica Acta, 249:121-137.
Chen C F, Liu Y S, Feng L P, Foley S F, Zhou L, Ducea M N, Hu Z C. 2018. Calcium isotope evidence for subductionenriched lithospheric mantle under the northern North China Craton. Geochimica et Cosmochimica Acta, 238:55-67.
Dai W, Wang Z C, Liu Y S, Chen C F, Zong K Q, Zhou L, Zhang G L, Li M, Moynier F, Hu Z C. 2020. Calcium isotope compositions of mantle pyroxenites. Geochimica et Cosmochimica Acta, 270:144-159.
DePaolo D J. 2004. Calcium isotopic variations produced by biological, kinetic, radiogenic and nucleosynthetic processes. Reviews in Mineralogy and Geochemistry, 55(1):255-288.
Du L, Long X P, Yuan C, Zhang Y Y, Huang Z Y, Sun M, Xiao W J. 2018. Petrogenesis of Late Paleozoic diorites and A-type granites in the central Eastern Tianshan, NW China:response to post-collisional extension triggered by slab breakoff. Lithos, 318-319:47-59.
Du L, Yuan C, Li X P, Zhang Y Y, Huang Z Y, Long X P. 2019a.Petrogenesis and geodynamic implications of the carboniferous Granitoids in the Dananhu Belt, Eastern Tianshan Orogenic Belt. Journal of Earth Science, 30(6):1 243-1 252.
Du L, Zhang Y Y, Huang Z Y, Li X P, Yuan C, Wu B, Long X P. 2019b. Devonian to carboniferous tectonic evolution of the Kangguer Ocean in the Eastern Tianshan, NW China:insights from three episodes of granitoids. Lithos, 350-351:105243.
Fantle M S, Tipper E T. 2014. Calcium isotopes in the global biogeochemical Ca cycle:implications for development of a Ca isotope proxy. Earth-Science Reviews, 129:148-177.
Farkaš J, Böhm F, Wallmann K, Blenkinsop J, Eisenhauer A, Van Geldern R, Munnecke A, Voigt S, Veizer J. 2007a.Calcium isotope record of Phanerozoic oceans:implications for chemical evolution of seawater and its causative mechanisms. Geochimica et Cosmochimica Acta, 71(21):5 117-5 134.
Farkaš J, Buhl D, Blenkinsop J, Veizer J. 2007b. Evolution of the oceanic calcium cycle during the late Mesozoic:evidence from δ44/40Ca of marine skeletal carbonates.Earth and Planetary Science Letters, 253(1-2):96-111.
Feng C Q, Qin T, Huang S C, Wu Z Q, Huang F. 2014. Firstprinciples investigations of equilibrium calcium isotope fractionation between clinopyroxene and Ca-doped orthopyroxene. Geochimica et Cosmochimica Acta, 143:132-142.
Feng L P, Zhou L, Yang L, DePaolo D J, Tong S Y, Liu Y S, Owens T L, Gao S. 2017. Calcium isotopic compositions of sixteen USGS reference materials. Geostandards and Geoanalytical Research, 41(1):93-106.
Feng L P, Zhou L, Yang L, Zhang W, Wang Q, Tong S Y, Hu Z C. 2018. A rapid and simple single-stage method for Ca separation from geological and biological samples for isotopic analysis by MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 33(3):413-421.
Gale A, Dalton C A, Langmuir C H, Su Y J, Schilling J G. 2013. The mean composition of ocean ridge basalts.Geochemistry, Geophysics, Geosystems, 14(3):489-518.
Green D H. 1973. Experimental melting studies on a model upper mantle composition at high pressure under watersaturated and water-undersaturated conditions. Earth and Planetary Science Letters, 19(1):37-53.
He Y S, Wang Y, Zhu C W, Huang S C, Li S G. 2017. Mass-independent and mass-dependent Ca Isotopic compositions of thirteen geological reference materials measured by thermal Ionisation mass spectrometry. Geostandards and Geoanalytical Research, 41(2):283-302.
Herzberg C. 2004. Partial crystallization of Mid-Ocean Ridge Basalts in the crust and mantle. Journal of Petrology, 45(12):2 389-2 405.
Heuser A, Eisenhauer A, Gussone N, Bock B, Hansen B T, Nägler T F. 2002. Measurement of calcium isotopes (δ44Ca) using a multicollector TIMS technique. International Journal of Mass Spectrometry, 220(3):385-397.
Huang F, Zhou C, Wang W Z, Kang J T, Wu Z Q. 2019. Firstprinciples calculations of equilibrium Ca isotope fractionation:implications for oldhamite formation and evolution of lunar magma ocean. Earth and Planetary Science Letters, 510:153-160.
Huang S C, Farkaš J, Jacobsen S B. 2010. Calcium isotopic fractionation between clinopyroxene and orthopyroxene from mantle peridotites. Earth and Planetary Science Letters, 292(3-4):337-344.
Huang S C, Farkaš J, Jacobsen S B. 2011. Stable calcium isotopic compositions of Hawaiian shield lavas:evidence for recycling of ancient marine carbonates into the mantle.Geochimica et Cosmochimica Acta, 75(17):4 987-4 997.
Huang S C, Jacobsen S B. 2017. Calcium isotopic compositions of chondrites. Geochimica et Cosmochimica Acta, 201:364-376.
Ionov D A, Qi Y H, Kang J T, Golovin A V, Oleinikov O B, Zheng W, Anbar A D, Zhang Z F, Huang F. 2019. Calcium isotopic signatures of carbonatite and silicate metasomatism, melt percolation and crustal recycling in the lithospheric mantle. Geochimica et Cosmochimica Acta, 248:1-13.
Jaques A L, Green D H. 1980. Anhydrous melting of peridotite at 0-15 kb pressure and the genesis of tholeiitic basalts.Contributions to Mineralogy and Petrology, 73(3):287-310.
John T, Gussone N, Podladchikov Y Y, Bebout G E, Dohmen R, Halama R, Klemd R, Magna T, Seitz H M. 2012.Volcanic arcs fed by rapid pulsed fluid flow through subducting slabs. Nature Geoscience, 5(7):489-492.
Kang J T, Ionov D A, Liu F, Zhang C L, Golovin A V, Qin L P, Zhang Z F, Huang F. 2017. Calcium isotopic fractionation in mantle peridotites by melting and metasomatism and Ca isotope composition of the Bulk Silicate Earth. Earth and Planetary Science Letters, 474:128-137.
Kang J T, Ionov D A, Zhu H L, Liu F, Zhang Z F, Liu Z, Huang F. 2019. Calcium isotope sources and fractionation during melt-rock interaction in the lithospheric mantle:evidence from pyroxenites, wehrlites, and eclogites. Chemical Geology, 524:272-282.
Kang J T, Zhu H L, Liu Y F, Liu F, Wu F, Hao Y T, Zhi X C, Zhang Z F, Huang F. 2016. Calcium isotopic composition of mantle xenoliths and minerals from Eastern China.Geochimica et Cosmochimica Acta, 174:335-344.
Li M, Lei Y, Feng L P, Wang Z C, Belshaw N S, Hu Z C, Liu Y S, Zhou L, Chen H H, Chai X N. 2018. High-precision Ca isotopic measurement using a large geometry high resolution MC-ICP-MS with a dummy bucket. Journal of Analytical Atomic Spectrometry, 33(10):1 707-1 719.
Liu F, Li X, An Y J, Li J, Zhang Z F. 2019. Calcium isotope ratio(δ44/40Ca) measurements of Ca-dominated minerals and rocks without column chemistry using the double-spike technique and thermal ionisation mass spectrometry. Geostandards and Geoanalytical Research, 43(3):509-517.
Liu F, Li X, Wang G Q, Liu Y F, Zhu H L, Kang J T, Huang F, Sun W D, Xia X P, Zhang Z F. 2017a. Marine carbonate component in the mantle beneath the southeastern Tibetan Plateau:evidence from magnesium and calcium isotopes. Journal of Geophysical Research:Solid Earth, 122:9 729-9 744.
Liu F, Zhang Z F, Li X, An Y J. 2020. A practical guide to the double-spike technique for calcium isotope measurements by Thermal Ionization Mass Spectrometry (TIMS).International Journal of Mass Spectrometry, 450:116307.
Liu F, Zhu H L, Li X, Wang G Q, Zhang Z F. 2017b. Calcium isotopic fractionation and compositions of geochemical reference materials. Geostandards and Geoanalytical Research, 41(4):675-688.
Lu W N, He Y S, Wang Y, Ke S. 2019. Behavior of calcium isotopes during continental subduction recorded in metabasaltic rocks. Geochimica et Cosmochimica Acta, https://doi.org/10.1016/j.gca.2019.09.027.
Lundstrom C C, Sampson D E, Perfit M R, Gill J, Williams Q. 1999. Insights into mid-ocean ridge basalt petrogenesis:u-series disequilibria from the Siqueiros Transform, Lamont Seamounts, and East Pacific Rise. Journal of Geophysical Research, 104(B3):13 035-13 048.
Ma J L, Wei G J, Liu Y, Ren Z Y, Xu Y G, Yang Y H. 2013.Precise measurement of stable neodymium isotopes of geological materials by using MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 28(12):1 926-1 931.
Magna T, Gussone N, Mezger K. 2015. The calcium isotope systematics of Mars. Earth and Planetary Science Letters, 430:86-94.
Nauret F, Abouchami W, Galer S J G, Hofmann A W, Hémond C, Chauvel C, Dyment J. 2006. Correlated trace elementPb isotope enrichments in Indian MORB along 18-20°S, Central Indian Ridge. Earth and Planetary Science Letters, 245(1-2):137-152.
Niu Y L. 1997. Mantle melting and melt extraction processes beneath ocean ridges:evidence from abyssal peridotites.Journal of Petrology, 38(8):1 047-1 074.
Perfit M R, Fornari D J, Malahoff A, Embley R W. 1983.Geochemical studies of abyssal lavas recovered by DSRV Alvin from Eastern Galapagos Rift, Inca Transform, and Ecuador Rift:3. Trace element abundances and petrogenesis. Journal of Geophysical Research:Solid Earth, 88(B12):10 551-10 572.
Price R C, Kennedy A K, Riggs-Sneeringer M, Frey F A. 1986.Geochemistry of basalts from the Indian Ocean triple junction:implications for the generation and evolution of Indian Ocean ridge basalts. Earth and Planetary Science Letters, 78(4):379-396.
Qi Y H, Liu X H, Kang J T, He L X. 2017. First-principles investigations of equilibrium Ca, Mg, Si and O isotope fractionations between silicate melts and minerals. In:Proceedings of AGU Fall Meeting Abstracts. American Geophysical Union, New Orleans.
Raczek I, Jochum K P, Hofmann A W. 2003. Neodymium and strontium isotope data for USGS reference materials BCR-1, BCR-2, BHVO-1, BHVO-2, AGV-1, AGV-2, GSP-1, GSP-2 and eight MPI-DING reference glasses.Geostandards Newsletter, 27(2):173-179.
Richter F M, Dauphas N, Teng F Z. 2009. Non-traditional fractionation of non-traditional isotopes:evaporation, chemical diffusion and Soret diffusion. Chemical Geology, 258(1-2):92-103.
Salters V J M, Stracke A. 2004. Composition of the depleted mantle. Geochemistry, Geophysics, Geosystems, 5(5):Q05B07.
Simon J I, DePaolo D J. 2010. Stable calcium isotopic composition of meteorites and rocky planets. Earth and Planetary Science Letters, 289(3-4):457-466.
Skulan J, DePaolo D J, Owens T L. 1997. Biological control of calcium isotopic abundances in the global calcium cycle.Geochimica et Cosmochimica Acta, 61(12):2 505-2 510.
Smith M C, Perfit M R, Jonasson I R. 1994. Petrology and geochemistry of basalts from the southern Juan de Fuca Ridge:controls on the spatial and temporal evolution of mid-ocean ridge basalt. Journal of Geophysical Research:Solid Earth, 99(3):4 787-4 812.
Sobolev A V, Hofmann A W, Kuzmin D V, Yaxley G M, Arndt N T, Chung S L, Danyushevsky L V, Elliott T, Frey F A, Garcia M O, Gurenko A A, Kamenetsky V S, Kerr A C, Krivolutskaya N A, Matvienkov V V, Nikogosian I K, Rocholl A, Sigurdsson I A, Sushchevskaya N M, Teklay M. 2007. The amount of recycled crust in sources of mantle-derived melts. Science, 316(5823):412-417.
Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes. Geological Society, London, Special Publications, 42(1):313-345.
Sun W, Bennett V C, Eggins S M, Arculus R J, Perfit M R. 2003. Rhenium systematics in submarine MORB and back-arc basin glasses:laser ablation ICP-MS results.Chemical Geology, 196(1-4):259-281.
Tanaka T, Togashi S, Kamioka H, Amakawa H, Kagami H, Hamamoto T, Yuhara M, Orihashi Y, Yoneda S, Shimizu H, Kunimaru T, Takahashi K, Yanagi T, Nakano T, Fujimaki H, Shinjo R, Asahara Y, Tanimizu M, Dragusanu C. 2000. JNdi-1:a neodymium isotopic reference in consistency with LaJolla neodymium. Chemical Geology, 168(3-4):279-281.
Thirlwall M F. 1991. Long-term reproducibility of multicollector Sr and Nd isotope ratio analysis. Chemical Geology:Isotope Geoscience section, 94(2):85-104.
Urey H C. 1947. The thermodynamic properties of isotopic substances. Journal of the Chemical Society (Resumed), 562:562-581.
Valdes M C, Debaille V, Berger J, Armytage R M G. 2019. The effects of high-temperature fractional crystallization on calcium isotopic composition. Chemical Geology, 509:77-91.
Valdes M C, Moreira M, Foriel J, Moynier F. 2014. The nature of Earth's building blocks as revealed by calcium isotopes.Earth and Planetary Science Letters, 394:135-145.
Verma S P. 1992. Seawater alteration effects on REE, K, Rb, Cs, Sr, U, Th, Pb and Sr-Nd-Pb isotope systematics of Mid-Ocean Ridge Basalt. Geochemical Journal, 26(3):159-177.
Wang W Z, Zhou C, Qin T, Kang J T, Huang S C, Wu Z Q, Huang F. 2017. Effect of Ca content on equilibrium Ca isotope fractionation between orthopyroxene and clinopyroxene.Geochimica et Cosmochimica Acta, 219:44-56.
Wang Y, He Y S, Wu H J, Zhu C W, Huang S C, Huang J. 2019.Calcium isotope fractionation during crustal melting and magma differentiation:granitoid and mineral-pair perspectives. Geochimica et Cosmochimica Acta, 259:37-52.
Workman R K, Hart S R. 2005. Major and trace element composition of the depleted MORB mantle (DMM).Earth and Planetary Science Letters, 231(1-2):53-72.
Wu W, Xu Y G, Zhang Z F, Li X. 2020. Calcium isotopic composition of the lunar crust, mantle, and bulk silicate Moon:a preliminary study. Geochimica et Cosmochimica Acta, 270:313-324.
Zhang H M, Wang Y, He Y S, Teng F Z, Jacobsen S B, Helz R T, Marsh B D, Huang S C. 2018. No measurable calcium isotopic fractionation during crystallization of Kilauea Iki lava lake. Geochemistry, Geophysics, Geosystems, 19(9):3 128-3 139.
Zhao X M, Zhang Z F, Huang S C, Liu Y F, Li X, Zhang H F. 2017. Coupled extremely light Ca and Fe isotopes in peridotites. Geochimica et Cosmochimica Acta, 208:368-380.
Zhu H L, Du L, Li X, Zhang Z F, Sun W D. 2020a. Calcium isotopic fractionation during plate subduction:constraints from back-arc basin basalts. Geochimica et Cosmochimica Acta, 270:379-393.
Zhu H L, Liu F, Li X, An Y J, Nan X Y, Du L, Huang F, Sun W D, Zhang Z F. 2020b. Significant δ44/40Ca variations between carbonate-and clay-rich marine sediments from the Lesser Antilles forearc and implications for mantle heterogeneity. Geochimica et Cosmochimica Acta, 276:239-257.
Zhu H L, Liu F, Li X, An Y J, Wang G Q, Zhang Z F. 2018a. A "peak cut" procedure of column separation for calcium isotope measurement using the double spike technique and Thermal Ionization Mass Spectrometry (TIMS). Journal of Analytical Atomic Spectrometry, 33(4):547-554.
Zhu H L, Liu F, Li X, Wang G Q, Zhang Z F, Sun W D. 2018b.Calcium isotopic compositions of normal Mid-Ocean Ridge Basalts from the southern Juan de Fuca Ridge.Journal of Geophysical Research:Solid Earth, 123(2):1 303-1 313.
Zhu H L, Zhang Z F, Wang G Q, Liu Y F, Liu F, Li X, Sun W D. 2016. Calcium isotopic fractionation during ionexchange column chemistry and Thermal Ionisation Mass Spectrometry (TIMS) determination. Geostandards and Geoanalytical Research, 40(2):185-194.
Copyright © Haiyang Xuebao