Cite this paper:
TIAN Jing, CHEN Zhuoyuan, JING Jiangping, FENG Chang, SUN Mengmeng, LI Weibing. Photoelectrochemical cathodic protection of Cu2O/TiO2 p-n heterojunction under visible light[J]. Journal of Oceanology and Limnology, 2020, 38(5): 1517-1531

Photoelectrochemical cathodic protection of Cu2O/TiO2 p-n heterojunction under visible light

TIAN Jing1,3,4, CHEN Zhuoyuan1,3, JING Jiangping1, FENG Chang1,4, SUN Mengmeng1, LI Weibing2
1 Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China;
2 School of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China;
3 Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China;
4 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract:
The Cu2O/TiO2 p-n heterojunction composite photoelectrodes were prepared by depositing Cu2O nanoparticles on the surface of TiO2 nanotubes via anodic oxidation and constant current deposition. Field emission scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM) analyses showed that Cu2O nanoparticles not only deposited on the surface of TiO2 nanotube array, but also on the wall of TiO2 nanotubes. The Cu2O deposition amount could be adjusted by changing the deposition time. The photoelectrochemical cathodic protection (PECCP) performance of the prepared photoelectrodes for 316L stainless steel (SS) was tested under visible light. The constant current deposition time had a significant effect on the PECCP performance of Cu2O/TiO2-X photoelectrodes and Cu2O/TiO2-20 had the best PECCP performance for the coupled 316L SS. This was attributed to the appropriate amount and thickness of Cu2O to form p-n heterojunctions with TiO2, in which separation of the photogenerated carriers was accelerated and transfer of the photogenerated electrons to 316L SS for PECCP was facilitated.
Key words:    Cu2O/TiO2|p-n heterojunction|316L SS|photoelectrochemical cathodic protection   
Received: 2019-12-19   Revised: 2020-01-30
Tools
PDF (3355 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by TIAN Jing
Articles by CHEN Zhuoyuan
Articles by JING Jiangping
Articles by FENG Chang
Articles by SUN Mengmeng
Articles by LI Weibing
References:
Aguirre M E, Zhou R X, Eugene A J, Guzman M I, Grela M A. 2017. Cu2O/TiO2 heterostructures for CO2 reduction through a direct Z-scheme:Protecting Cu2O from photocorrosion. Applied Catalysis B:Environmental, 217:485-493, https://doi.org/10.1016/j.apcatb.2017.05.058.
Bu Y Y, Chen Z Y, Ao J P, Hou J, Sun M X. 2018. Study of the photoelectrochemical cathodic protection mechanism for steel based on the SrTiO3-TiO2 composite. Journal of Alloys and Compounds, 731:1 214-1 224, https://doi.org/10.1016/j.jallcom.2017.10.165.
Bu Y Y, Chen Z Y, Yu J Q, Li W B. 2013. A novel application of g-C3N4 thin film in photoelectrochemical anticorrosion.Electrochimica Acta, 88:294-300, https://doi.org/10.1016/j.electacta.2012.10.049.
Chen J, Shen S H, Guo P H, Wang M, Wu P, Wang X X, Guo L J. 2014a. In-situ reduction synthesis of nano-sized Cu2O particles modifying g-C3N4 for enhanced photocatalytic hydrogen production. Applied Catalysis B:Environmental, 152-153:335-341, https://doi.org/10.1016/j.apcatb.2014.01.047.
Chen Y F, Huang W X, He D L, Situ Y, Huang H. 2014b.Construction of heterostructured g-C3N4/Ag/TiO2 microspheres with enhanced photocatalysis performance under visible-light irradiation. ACS Applied Materials & Interfaces, 6(16):14 405-14 414, https://doi.org/10.1021/am503674e.
De Jongh P E, Vanmaekelbergh D, Kelly J J. 1999. Cu2O:electrodeposition and characterization. Chemistry of Materials, 11(12):3 512-3 517, https://doi.org/10.1021/cm991054e.
Dong J Y, Han J, Liu Y S, Nakajima A, Matsushita S, Wei S H, Gao W. 2014. Defective black TiO2 synthesized via anodization for visible-light photocatalysis. ACS Applied Materials & Interfaces, 6(3):1 385-1 388, https://doi.org/10.1021/am405549p.
Foster H A, Ditta I B, Varghese S, Steele A. 2011. Photocatalytic disinfection using titanium dioxide:spectrum and mechanism of antimicrobial activity. Applied Microbiology and Biotechnology, 90(6):1 847-1 868, https://doi.org/10.1007/s00253-011-3213-7.
Fujishima A, Honda K. 1972. Electrochemical photolysis of water at a semiconductor electrode. Nature, 238(5358):37-38, https://doi.org/10.1038/238037a0.
Gou J F, Ma Q L, Deng X Y, Cui Y Q, Zhang H X, Cheng X W, Li X L, Xie M Z, Cheng Q F. 2017. Fabrication of Ag2O/TiO2-Zeolite composite and its enhanced solar light photocatalytic performance and mechanism for degradation of norfloxacin. Chemical Engineering Journal, 308:818-826, https://doi.org/10.1016/j.cej.2016.09.089.
Inguanta R, Piazza S, Sunseri C. 2008. Template electrosynthesis of aligned Cu2O nanowires:Part I.Fabrication and characterization. Electrochimica Acta, 53(22):6 504-6 512, https://doi.org/10.1016/j.electacta. 2008.04.075.
Jing J P, Chen Z Y, Bu Y Y, Sun M M, Zheng W Q, Li W B. 2019a. Significantly enhanced photoelectrochemical cathodic protection performance of hydrogen treated Crdoped SrTiO3 by Cr6+ reduction and oxygen vacancy modification. Electrochimica Acta, 304:386-395, https://doi.org/10.1016/j.electacta.2019.03.020.
Jing J P, Chen Z Y, Feng C. 2019b. Dramatically enhanced photoelectrochemical properties and transformed p/n type of g-C3N4 caused by K and I co-doping. Electrochimica Acta, 297:488-496, https://doi.org/10.1016/j.electacta. 2018.12.015.
Jing J P, Sun M M, Chen Z Y, Li J R, Xu F L, Xu L K. 2017.Enhanced photoelectrochemical cathodic protection performance of the secondary reduced graphene oxide modified graphitic carbon nitride. Journal of the Electrochemical Society, 164(13):C 822-C 830, https://doi.org/10.1149/2.1481713jes.
Kho Y K, Iwase A, Teoh W Y, Mädler L, Kudo A, Amal R. 2010. Photocatalytic H2 evolution over TiO2 nanoparticles.The synergistic effect of anatase and rutile. The Journal of Physical Chemistry C, 114(6):2 821-2 829, https://doi.org/10.1021/jp910810r.
Kočí K, Matějů K, Obalová L, Krejčíková S, Lacný Z, Plachá D, Čapek L, Hospodková A, Šolcová O. 2010. Effect of silver doping on the TiO2 for photocatalytic reduction of CO2. Applied Catalysis B:Environmental, 96(3-4):239-244, https://doi.org/10.1016/j.apcatb.2010.02.030.
Li H, Xia Z B, Chen J Q, Lei L, Xing J H. 2015a. Constructing ternary CdS/reduced graphene oxide/TiO2 nanotube arrays hybrids for enhanced visible-light-driven photoelectrochemical and photocatalytic activity. Applied Catalysis B:Environmental, 168-169:105-113, https://doi.org/10.1016/j.apcatb.2014.12.029.
Li J, Ni Z B, Ji Y J, Zhu Y X, Liu H Z, Zhang Y, Gong X Q, Zhong Z Y, Su F B. 2019. ZnO supported on Cu2O{1 0 0} enhances charge transfer in dimethyldichlorosilane synthesis. Journal of Catalysis, 374:284-296, https://doi.org/10.1016/j.jcat.2019.02.029.
Li Y F, Zhang W P, Shen X, Peng P F, Xiong L B, Yu Y. 2015c.Octahedral Cu2O-modified TiO2 nanotube arrays for efficient photocatalytic reduction of CO2. Chinese Journal of Catalysis, 36(12):2 229-2 236, https://doi.org/10.1016/S1872-2067(15)60991-3.
Li Y P, Wang B W, Liu S H, Duan X F, Hu Z Y. 2015b. Synthesis and characterization of Cu2O/TiO2 photocatalysts for H2 evolution from aqueous solution with different scavengers. Applied Surface Science, 324:736-744, https://doi.org/10.1016/j.apsusc.2014.11.027.
Lu X H, Wang G M, Zhai T, Yu M H, Gan J Y, Tong Y X, Li Y. 2012. Hydrogenated TiO2 nanotube arrays for supercapacitors. Nano Letters, 12(3):1 690-1 696, https://doi.org/10.1021/nl300173j.
Lu X H, Yu M H, Wang G M, Zhai T, Xie S L, Ling Y C, Tong Y X, Li Y. 2013. H-TiO2@MnO2//H-TiO2@C core-shell nanowires for high performance and flexible asymmetric supercapacitors. Advanced Materials, 25(2):267-272, https://doi.org/10.1002/adma.201203410.
Momeni M M, Ghayeb Y, Ghonchegi Z. 2015. Fabrication and characterization of copper doped TiO2 nanotube arrays by in situ electrochemical method as efficient visible-light photocatalyst. Ceramics International, 41(7):8 735-8 741, https://doi.org/10.1016/j.ceramint.2015.03.094.
Momeni M M, Ghayeb Y, Moosavi N. 2018. Preparation of Ni-Pt/Fe-TiO2 nanotube films for photoelectrochemical cathodic protection of 403 stainless steel. Nanotechnology, 29(42):425701, https://doi.org/10.1088/1361-6528/aad5f5.
Momeni M M, Khansari-Zadeh S H, Farrokhpour H. 2019a. Fabrication of tungsten-iron-doped TiO2 nanotubes via anodization:new photoelectrodes for photoelectrochemical cathodic protection under visible light. SN Applied Sciences, 1(10):1 160, https://doi.org/10.1007/s42452-019-1157-1.
Momeni M M, Mahvari M, Ghayeb Y. 2019b. Photoelectrochemical properties of iron-cobalt WTiO2 nanotube photoanodes for water splitting and photocathodic protection of stainless steel. Journal of Electroanalytical Chemistry, 832:7-23, https://doi.org/10.1016/j.jelechem.2018.10.035.
Momeni M M, Taghinejad M, Ghayeb Y, Bagheri R, Song Z L. 2019c. Preparation of various boron-doped TiO2 nanostructures by in situ anodizing method and investigation of their photoelectrochemical and photocathodic protection properties. Journal of the Iranian Chemical Society, 16(9):1 839-1 851, https://doi.org/10.1007/s13738-019-01658-7.
Momeni M M. 2015. Fabrication of copper decorated tungsten oxide-titanium oxide nanotubes by photochemical deposition technique and their photocatalytic application under visible light. Applied Surface Science, 357:160-166, https://doi.org/10.1016/j.apsusc.2015.09.015.
Ohko Y, Saitoh S, Tatsuma T, Fujishima A. 2001. Photoelectrochemical anticorrosion and self-cleaning effects of a TiO2 coating for type 304 stainless steel. Journal of the Electrochemical Society, 148(1):B24-B28, https://doi.org/10.1149/1.1339030.
Peng B Y, Zhang S S, Yang S Y, Wang H J, Yu H, Zhang S Q, Peng F. 2014. Synthesis and characterization of g-C3N4/Cu2O composite catalyst with enhanced photocatalytic activity under visible light irradiation. Materials Research Bulletin, 56:19-24, https://doi.org/10.1016/j.materresbull.2014.04.042.
Roy P, Kim D, Lee K, Spiecker E, Schmuki P. 2010. TiO2 nanotubes and their application in dye-sensitized solar cells. Nanoscale, 2(1):45-59, https://doi.org/10.1039/B9NR00131J.
Sauvage F, Di Fonzo F, Li Bassi A, Casari C S, Russo V, Divitini G, Ducati C, Bottani C E, P. Comte P, Graetzel M. 2010. Hierarchical TiO2 photoanode for dye-sensitized solar cells. Nano Letters, 10(7):2 562-2 567, https://doi.org/10.1021/nl101198b.
Sui Y M, Fu W Y, Zeng Y, Yang H B, Zhang Y Y, Chen H, Li Y X, Li M H, Zou G T. 2010. Synthesis of Cu2O nanoframes and nanocages by selective oxidative etching at room temperature. Angewandte Chemie International Edition, 49(25):4 282-4 285, https://doi.org/10.1002/anie.200907117.
Sun M M, Chen Z Y, Bu Y Y, Yu J Q, Hou B R. 2014. Effect of ZnO on the corrosion of zinc, Q235 carbon steel and 304 stainless steel under white light illumination. Corrosion Science, 82:77-84, https://doi.org/10.1016/j.corsci.2013.12.022.
Sun M M, Chen Z Y, Li J R, Hou J, Xu F L, Xu L K, Zeng R C. 2018. Enhanced visible light-driven activity of TiO2 nanotube array photoanode co-sensitized by "green" AgInS2 photosensitizer and In2S3 buffer layer. Electrochimica Acta, 269:429-440, https://doi.org/10.1016/j.electacta.2018.03.035.
Sun M M, Chen Z Y, Yu J Q. 2013. Highly efficient visible light induced photoelectrochemical anticorrosion for 304 SS by Ni-doped TiO2. Electrochimica Acta, 109:13-19, https://doi.org/10.1016/j.electacta.2013.07.121.
Tian B Z, Li C Z, Zhang J L. 2012. One-step preparation, characterization and visible-light photocatalytic activity of Cr-doped TiO2 with anatase and rutile bicrystalline phases. Chemical Engineering Journal, 191:402-409, https://doi.org/10.1016/j.cej.2012.03.038.
Tian J, Chen Z W, Deng X Y, Sun Q, Sun Z Y, Li W B. 2018. Improving visible light driving degradation of norfloxacin over core-shell hierarchical BiOCl microspherical photocatalyst by synergistic effect of oxygen vacancy and nanostructure. Applied Surface Science, 453:373-382, https://doi.org/10.1016/j.apsusc.2018.04.255.
Wang F Z, Li W J, Gu S N, Li H D, Wu X, Ren C J, Liu X T. 2017. Facile fabrication of direct Z-scheme MoS2/Bi2WO6 heterojunction photocatalyst with superior photocatalytic performance under visible light irradiation. Journal of Photochemistry and Photobiology A:Chemistry, 335:140-148, https://doi.org/10.1016/j.jphotochem.2016.11.026.
Wang W Z, Huang X W, Wu S, Zhou Y X, Wang L J, Shi H L, Liang Y J, Zou B. 2013. Preparation of p-n junction Cu2O/BiVO4 heterogeneous nanostructures with enhanced visible-light photocatalytic activity. Applied Catalysis B:Environmental, 134-135:293-301, https://doi.org/10.1016/j.apcatb.2013.01.013.
Xi Z H, Li C J, Zhang L, Xing M Y, Zhang J L. 2014. Synergistic effect of Cu2O/TiO2 heterostructure nanoparticle and its high H2 evolution activity. International Journal of Hydrogen Energy, 39(12):6 345-6 353, https://doi.org/10.1016/j.ijhydene.2014.01.209.
Xiang Q J, Yu J G, Jaroniec M. 2012. Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles. Journal of the American Chemical Society, 134(15):6 575-6 578, https://doi.org/10.1021/ja302846n.
Yadav H M, Otari S V, Koli V B, Mali S S, Hong C K, Pawar S H, Delekar S D. 2014. Preparation and characterization of copper-doped anatase TiO2 nanoparticles with visible light photocatalytic antibacterial activity. Journal of Photochemistry and Photobiology A:Chemistry, 280:32-38, https://doi.org/10.1016/j.jphotochem.2014.02.006.
Yan H J, Yang H X. 2011. TiO2-g-C3N4 composite materials for photocatalytic H2 evolution under visible light irradiation.Journal of Alloys and Compounds, 509(4):L26-L29, https://doi.org/10.1016/j.jallcom.2010.09.201.
Yang L X, Luo S L, Li Y, Xiao Y, Kang Q, Cai Q Y. 2010. High efficient photocatalytic degradation of p-nitrophenol on a unique Cu2O/TiO2 p-n heterojunction network catalyst.Environmental Science & Technology, 44(19):7 641-7 646, https://doi.org/10.1021/es101711k.
Yang Y, Cheng Y F. 2017. Factors affecting the performance and applicability of SrTiO3 photoelectrodes for photoinduced cathodic protection. Journal of the Electrochemical Society, 164(14):C1 067-C1 075, https://doi.org/10.1149/2.1451714jes.
Yang Y, Cheng Y F. 2018. One-step facile preparation of ZnO nanorods as high-performance photoanodes for photoelectrochemical cathodic protection. Electrochimica Acta, 276:311-318, https://doi.org/10.1016/j.electacta.2018.04.206.
Yao L Z, Wang W Z, Wang L J, Liang Y J, Fu J L, Shi H L. 2018. Chemical bath deposition synthesis of TiO2/Cu2O core/shell nanowire arrays with enhanced photoelectrochemical water splitting for H2 evolution and photostability. International Journal of Hydrogen Energy, 43(33):15 907-15 917, https://doi.org/10.1016/j.ijhydene. 2018.06.127.
Zhang Q, Lima D Q, Lee I, Zaera F, Chi M F, Yin Y D. 2011. A highly active titanium dioxide based visible-light photocatalyst with nonmetal doping and plasmonic metal decoration. Angewandte Chemie International Edition, 50(31):7 088-7 092, https://doi.org/10.1002/anie.201101969.
Zhang Z J, Wang W Z, Wang L, Sun S M. 2012. Enhancement of visible-light photocatalysis by coupling with narrowband-gap semiconductor:a case study on Bi2S3/Bi2WO6. ACS Applied Materials & Interfaces, 4(2):593-597, https://doi.org/10.1021/am2017199.
Zhao W, Liu Y, Wei Z B, Yang S G, He H, Sun C. 2016. Fabrication of a novel p-n heterojunction photocatalyst n-BiVO4@p-MoS2 with core-shell structure and its excellent visible-light photocatalytic reduction and oxidation activities. Applied Catalysis B:Environmental, 185:242-252, https://doi.org/10.1016/j.apcatb.2015.12.023.
Zhu C Q, Osherov A, Panzer M J. 2013. Surface chemistry of electrodeposited Cu2O films studied by XPS. Electrochimica Acta, 111:771-778, https://doi.org/10.1016/j.electacta.2013.08.038.
Zhuang J D, Dai W X, Tian Q F, Li Z H, Xie L Y, Wang J X, Liu P, Shi X C, Wang D H. 2010. Photocatalytic degradation of RhB over TiO2 bilayer films:effect of defects and their location. Langmuir, 26(12):9 686-9 694, https://doi.org/10.1021/la100302m.
Copyright © Haiyang Xuebao