Cite this paper:
SONG Junjie, DOU Shuozeng, CAO Liang, LIU Jinhu. Sulcus and otolith outline analyses: complementary tools for stock discrimination in white croaker Pennahia argentata in northern Chinese coastal waters[J]. Journal of Oceanology and Limnology, 2020, 38(5): 1559-1571

Sulcus and otolith outline analyses: complementary tools for stock discrimination in white croaker Pennahia argentata in northern Chinese coastal waters

SONG Junjie1,3, DOU Shuozeng1,2,3, CAO Liang1,2, LIU Jinhu1,2
1 Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China;
2 Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China;
3 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract:
This study analyzed and compared variations of the sulcus and otolith outlines of three geographic stocks (Huanghe (Yellow) River estuary (HHE), Jiaozhou Bay (JZB), and Changjiang (Yangtze) River estuary (CJE)) of white croaker Pennahia argentata in northern Chinese coastal waters. The sulcus and otolith outline analyses via elliptical Fourier transform (EFT, i.e., outline analysis) achieved an overall classification rate of 80.4% and 87.2%, respectively. Based on a combination of sulcus and otolith shape indices (SIs) and two derivative ratios, a moderate discriminatory efficiency of 64.7% was obtained. The results indicate that sulcus outline analysis could be used alone to discriminate white croaker stocks, and that both sulcus and otolith outline analyses discriminated the fish stocks at a higher classification rate than the shape indices. The sulcus outline analysis provided complementary information to the whole otolith outline analysis for stock discrimination. Both the sulcus and otolith outline analyses efficiently discriminated between the most geographically separated CJE and HHE stocks, indicating that they could be considered discrete stocks for fishery management.
Key words:    sulcus|otolith|elliptic Fourier coefficients|shape indices|stock discrimination   
Received: 2020-01-13   Revised: 2020-02-19
Tools
PDF (1044 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by SONG Junjie
Articles by DOU Shuozeng
Articles by CAO Liang
Articles by LIU Jinhu
References:
Agüera A, Brophy D. 2011. Use of saggital otolith shape analysis to discriminate Northeast Atlantic and Western Mediterranean stocks of Atlantic saury, Scomberesox saurus saurus (Walbaum). Fisheries Research, 110(3):465-471, https://doi.org/10.1016/j.fishres.2011.06.003.
Arellano R V, Hamerlynck O, Vincx M, Mees J, Hostens K, Gijselinck W. 1995. Changes in the ratio of the sulcus acusticus area to the sagitta area of Pomatoschistus minutus and P. lozanoi (Pisces, Gobiidae). Marine Biology, 122(3):355-360, https://doi.org/10.1007/BF00350868.
Avigliano E, Comte G, Rosso J J, Mabragaña E, Rosa P D, Sanchez S, Volpedo A, del Rosso F, Schenone N F. 2015. Identification of fish stocks of river crocker (Plagioscion ternetzi) in Paraná and Paraguay rivers by using otolith morphometric analysis. Latin American Journal of Aquatic Research, 43(3):718-725, https://doi.org/10.3856/vol43-issue4-fulltext-10.
Avigliano E, Jawad L A, Volpedo A V. 2016. Assessment of the morphometry of saccular otoliths as a tool to identify triplefin species (Tripterygiidae). Journal of the Marine Biological Association of the United Kingdom, 96(5):1 167-1 180, https://doi.org/10.1017/s0025315415001101.
Avigliano E, Martinez C F R, Volpedo A V. 2014. Combined use of otolith microchemistry and morphometry as indicators of the habitat of the silverside (Odontesthes bonariensis) in a freshwater-estuarine environment.Fisheries Research, 149:55-60, https://doi.org/10.1016/j.fishres.2013.09.013.
Begg G A, Brown R W. 2000. Stock identification of haddock Melanogrammus aeglefinus on Georges Bank based on otolith shape analysis. Transactions of the American Fisheries Society, 129(4):935-945, https://doi.org/10.1577/1548-8659(2000)129<0935:SIOHMA>2.3.CO;2.
Berg F, Almeland O W, Skadal J, Slotte A, Andersson L, Folkvord A. 2018. Genetic factors have a major effect on growth, number of vertebrae and otolith shape in Atlantic herring (Clupea harengus). PLoS One, 13(1):e0190995, https://doi.org/10.1371/journal.pone.0190995.
Burke N, Brophy D, King P A. 2008. Otolith shape analysis:its application for discriminating between stocks of Irish Sea and Celtic Sea herring (Clupea harengus) in the Irish Sea.ICES Journal of Marine Science, 65(9):1 670-1 675, https://doi.org/10.1093/icesjms/fsn177.
Cadrin S X, Friedland K D. 1999. The utility of image processing techniques for morphometric analysis and stock identification. Fisheries Research, 43(1-3):129-139, https://doi.org/10.1016/S0165-7836(99)00070-3.
Campana S E, Casselman J M. 1993. Stock discrimination using otolith shape analysis. Canadian Journal of Fisheries and Aquatic Sciences, 50(5):1 062-1 083, https://doi.org/10.1139/f93-123.
Campana S E, Neilson J D. 1985. Microstructure of fish otoliths. Canadian Journal of Fisheries and Aquatic Sciences, 42(5):1 014-1 032, https://doi.org/10.1139/f85-127.
Cañás L, Stransky C, Schlickeisen J, Sampedro M P, Fariña A C. 2012. Use of the otolith shape analysis in stock identification of anglerfish (Lophius piscatorius) in the Northeast Atlantic. ICES Journal of Marine Science, 69(2):250-256, https://doi.org/10.1093/icesjms/fss006.
Cardinale M, Doering-Arjes P, Kastowsky M, Mosegaard H. 2004. Effects of sex, stock, and environment on the shape of known-age Atlantic cod (Gadus morhua) otoliths.Canadian Journal of Fisheries and Aquatic Sciences, 61(2):158-167, https://doi.org/10.1139/f03-151.
Castonguay M, Simard P, Gagnon P. 1991. Usefulness of Fourier analysis of otolith shape for Atlantic mackerel(Scomber scombrus) stock discrimination. Canadian Journal of Fisheries and Aquatic Sciences, 48(2):296-302, https://doi.org/10.1139/f91-041.
Chen D G. 1991. Fisheries Ecology of the Bohai Sea and the Yellow Sea. China Ocean Press, Beijing, 505p. (in Chinese)
Chen J J, Xu Z L. 2011. Spatial-temporal pattern to fishing ground of white croaker in Bohai, Yellow and East China Seas. Journal of Natural Resources, 26(4):666-673, https://doi.org/10.11849/zrzyxb.2011.04.012. (in Chinese with English abstract)
Chen J S. 2006. Theories of River Water Quality and Water Quality of Chinese Rivers. Science Press, Beijing, 292p.(in Chinese)
Crampton J S. 1995. Elliptic Fourier shape analysis of fossil bivalves:some practical considerations. Lethaia, 28(2):179-186, https://doi.org/10.1111/j.1502-3931.1995.tb01611.x.
de Carvalho B M, Vaz-dos-Santos A M, Spach H L, Volpedo A V. 2015. Ontogenetic development of the sagittal otolith of the anchovy, Anchoa tricolor, in a subtropical estuary.Scientia Marina, 79(4):409-418, https://doi.org/10.3989/scimar.04218.31A.
Ferguson G J, Ward T M, Gillanders B M. 2011. Otolith shape and elemental composition:complementary tools for stock discrimination of mulloway (Argyrosomus japonicus) in southern Australia. Fisheries Research, 110(1):75-83, https://doi.org/10.1016/j.fishres.2011.03.014.
Gauldie R W. 1988. Function, form and time-keeping properties of fish otoliths. Comparative Biochemistry and Physiology Part A:Physiology, 91(2):395-402, https://doi.org/10.1016/0300-9629(88)90436-7.
Han Z Q, Gao T X, Yanagimoto T, Sakurai Y. 2008. Deep phylogeographic break among white croaker Pennahia argentata (Sciaenidae, Perciformes) populations in Northwestern Pacific. Fisheries Science, 74(4):770-780, https://doi.org/10.1111/j.1444-2906.2008.01588.x.
Jaramillo A M, Tombari A D, Durá V B, Rodrigo M E, Volpedo A V. 2014. Otolith eco-morphological patterns of benthic fishes from the coast of Valencia (Spain). Thalassas, 30(1):57-66.
Ju P L, Yang L, Lu Z B, Yang S Y, Du J G, Zhong H Q, Chen J, Xiao J M, Chen M R, Zhang C Y. 2016. Age, growth, mortality and population structure of silver croaker Pennahia argentata (Houttuyn, 1782) and red bigeye Priacanthus macracanthus Cuvier, 1829 in the northcentral Taiwan Strait. Journal of Applied Ichthyology, 32(4):652-660, https://doi.org/10.1111/jai.13053.
Kuhl F P, Giardina C R. 1982. Elliptic Fourier features of a closed contour. Computer Graphics and Image Processing, 18(3):236-258, https://doi.org/10.1016/0146-664X(82)90034-X.
Li X Z, Liu L S, Li B Q. 2010. Macrobenthos in China Sea:Research and Practice. China Ocean Press, Beijing, 378p.(in Chinese)
Libungan L A, Pálsson S. 2015. ShapeR:an R package to study otolith shape variation among fish populations. PLoS One, 10(3):e0121102, https://doi.org/10.1371/journal.pone.0121102.
Lin L S, Cheng J H, Ling J Z, Zhang H Y. 2006. First capture sizes of major commercial fishes in the East China Sea Region. Journal of Fishery Sciences of China, 13(2):250-256. https://doi.org/10.3321/j.issn:1005-8737.2006.02.014. (in Chinese with English abstract)
Lohmann G P, Schweitzer P N. 1990. On eigenshape analysis. In:Rohlf F J, Bookstein F L eds. Proceedings of the Michigan Morphometrics Workshop. University of Michigan Museum of Zoology, Ann Arbor, Michigan.p.147-166.
Lombarte A, Lleonart J. 1993. Otolith size changes related with body growth, habitat depth and temperature.Environmental Biology of Fishes, 37(3):297-306, https://doi.org/10.1007/BF00004637.
Lombarte A, Morales-Nin B. 1995. Morphology and ultrastructure of saccular otoliths from five species of the genus Coelorinchus (Gadiformes:Macrouridae) from the Southeast Atlantic. Journal of Morphology, 225(2):179-192, https://doi.org/10.1002/jmor.1052250204.
Lombarte A. 1992. Changes in otolith area:sensory area ratio with body size and depth. Environmental Biology of Fishes, 33(4):405-410, https://doi.org/10.1007/BF00010955.
Longmore C, Fogarty K, Neat F, Brophy D, Trueman C, Milton A, Mariani S. 2010. A comparison of otolith microchemistry and otolith shape analysis for the study of spatial variation in a deep-sea teleost, Coryphaenoides rupestris. Environmental Biology of Fishes, 89(3-4):591-605, https://doi.org/10.1007/s10641-010-9674-1.
Montanini S, Stagioni M, Valdrè G, Tommasini S, Vallisneri M. 2015. Intra-specific and inter-specific variability of the sulcus acusticus of sagittal otoliths in two gurnard species(Scorpaeniformes, Triglidae). Fisheries Research, 161:93-101, https://doi.org/10.1016/j.fishres.2014.07.003.
Naya M J G, Tombari A, Volpedo A, Gómez S E. 2012. Size related changes in sagitta otoliths of Australoheros facetus(Pisces; Cichlidae) from South America. Journal of Applied Ichthyology, 28(5):752-755, https://doi.org/10.1111/j.1439-0426.2012.02006.x.
Petursdottir G, Begg G A, Marteinsdottir G. 2006.Discrimination between Icelandic cod (Gadus morhua L.) populations from adjacent spawning areas based on otolith growth and shape. Fisheries Research, 80(2-3):182-189, https://doi.org/10.1016/j.fishres.2006.05.002.
Popper A N, Ramcharitar J, Campana S E. 2005. Why otoliths? Insights from inner ear physiology and fisheries biology.Marine and Freshwater Research, 56(5):497-504, https://doi.org/10.1071/MF04267.
Stransky C, Murta A G, Schlickeisen J, Zimmermann C. 2008.Otolith shape analysis as a tool for stock separation of horse mackerel (Trachurus trachurus) in the Northeast Atlantic and Mediterranean. Fisheries Research, 89(2):159-166, https://doi.org/10.1016/j.fishres.2007.09.017.
Stransky C. 2014. Morphometric outlines. In:Cadrin S X, Kerr L A, Mariani S eds. Stock Identification Methods:Applications in Fishery Science. 2nd edn. Academic Press, New York. p.129-140.
Sun S, Sun X X. 2011. Atlas of Long-Term Changes in the Jiaozhou Bay Ecosystem. China Ocean Press, Beijing, 809p. (in Chinese)
Torres G J, Lombarte A, Morales-Nin B. 2000a. Sagittal otolith size and shape variability to identify geographical intraspecific differences in three species of the genus Merluccius. Journal of the Marine Biological Association of the United Kingdom, 80(2):333-342, https://doi.org/10.1017/S0025315499001915.
Torres G J, Lombarte A, Morales-Nin B. 2000b. Variability of the sulcus acusticus in the sagittal otolith of the genus Merluccius (Merlucciidae). Fisheries Research, 46(1-3):5-13, https://doi.org/10.1016/S0165-7836(00)00128-4.
Tsai K E. 2009. Study of the acoustic characters of eleven soniferous fish in the western coastal waters of Taiwan.National Sun Yat-sen University, Guangzhou. 68p. (in Chinese)
Tuset V M, Lombarte A, Assis C A. 2008. Otolith atlas for the western Mediterranean, north and central eastern Atlantic.Scientia Marina, 72(S1):7-198, https://doi.org/10.3989/scimar.2008.72s17.
Tuset V M, Lombarte A, González J A, Pertusa J F, Lorente M J. 2003a. Comparative morphology of the sagittal otolith in Serranus spp. Journal of Fish Biology, 63(6):1 491-1 504, https://doi.org/10.1111/j.1095-8649.2003.00262.x.
Tuset V M, Lozano I J, González J A, Pertusa J F, García-Díaz M M. 2003b. Shape indices to identify regional differences in otolith morphology of comber, Serranus cabrilla (L., 1758). Journal of Applied Ichthyology, 19(2):88-93, https://doi.org/10.1046/j.1439-0426.2003.00344.x.
Volpedo A, Echeverría D D. 2003. Ecomorphological patterns of the sagitta in fish on the continental shelf off Argentine.Fisheries Research, 60(2-3):551-560, https://doi.org/10.1016/S0165-7836(02)00170-4.
Waessle J A, Lasta C A, Favero M. 2003. Otolith morphology and body size relationships for juvenile Sciaenidae in the Río de la Plata estuary (35-36°S). Scientia Marina, 67(2):233-240, https://doi.org/10.3989/scimar.2003.67n2233.
Zar J H. 2010. Biostatistical Analysis. 5th edn. Prentice Hall, New Jersey, 944p.
Copyright © Haiyang Xuebao