Cite this paper:
ZHOU Qian, DUAN Wansuo, HU Junya. Exploring sensitive area in the tropical Indian Ocean for El Niño prediction: implication for targeted observation[J]. Journal of Oceanology and Limnology, 2020, 38(6): 1602-1615

Exploring sensitive area in the tropical Indian Ocean for El Niño prediction: implication for targeted observation

ZHOU Qian1,2, DUAN Wansuo3,4, HU Junya5
1 National Marine Environmental Forecasting Center, Ministry of Natural Resources, Beijing 100081, China;
2 Key Laboratory of Research on Marine Hazards Forecasting, National Marine Environmental Forecasting Center, Beijing 100081, China;
3 LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China;
4 University of Chinese Academy of Sciences, Beijing 100049, China;
5 Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
Based on initial errors of sea temperature in the tropical Indian Ocean that are most likely to induce spring predictability barrier (SPB) for the El Niño prediction, the sensitive area of sea temperature in the tropical Indian Ocean for El Niño prediction starting from January is identified using the CESM1.0.3 (Community Earth System Model), a fully coupled global climate model. The sensitive area locates mainly in the subsurface of eastern Indian Ocean. The effectiveness of applying targeted observation in the sensitive area is also evaluated in an attempt to improve the El Niño prediction skill. The results of sensitivity experiments indicate that if initial errors exist only in the tropical Indian Ocean, applying targeted observation in the sensitive area in the Indian Ocean can significantly improve the El Niño prediction. In particular, for SPB-related El Niño events, when initial errors of sea temperature exist both in the tropical Indian Ocean and the Pacific Ocean, which is much closer to the realistic predictions, if targeted observations are conducted in the sensitive area of tropical Pacific, the prediction skills of SPB-related El Niño events can be improved by 20.3% in general. Moreover, if targeted observations are conducted in the sensitive area of tropical Indian Ocean in addition, the improvement of prediction skill can be increased by 25.2%. Considering the volume of sensitive area in the tropical Indian Ocean is about 1/3 of that in the tropical Pacific Ocean, the prediction skill improvement per cubic kilometer in the sensitive area of tropical Indian Ocean is competitive to that of the tropical Pacific Ocean. Additional to the sensitive area of the tropical Pacific Ocean, sensitive area of the tropical Indian Ocean is also a very effective and cost-saving area for the application of targeted observations to improve El Niño forecast skills.
Key words:    tropical Indian Ocean|El Niño prediction|sensitive area|targeted observation   
Received: 2019-03-12   Revised: 2019-05-03
PDF (1352 KB) Free
Print this page
Add to favorites
Email this article to others
Articles by ZHOU Qian
Articles by DUAN Wansuo
Articles by HU Junya
Alexander M, Bladé I, Newman M, Lanzante J R, Lau N C, Scott J D. 2002. The atmospheric bridge:The influence of ENSO teleconnections on air-sea interaction over the global oceans. Journal of Climate, 15(16):2 205-2 231,<2205:tabtio>;2.
Chen D K, Cane M A. 2008. El Niño prediction and predictability. Journal of Computational Physics, 227(7):3 625-3 640,
Chen D K, Smith N, Kessler W. 2018. The evolving ENSO observing system. National Science Review, 5(6):805-807,
Chen D K, Zebiak S E, Busalacchi A J, Cane M A. 1995. An improved procedure for EI Niño forecasting:implications for predictability. Science, 269(5231):1 699-1 702,
Duan W S, Hu J Y. 2016. The initial errors that induce a significant "spring predictability barrier" for El Niño events and their implications for target observation:results from an earth system model. Climate Dynamics, 46(11-12):3 599-3 615,
Duan W S, Li X Q, Tian B. 2018. Towards optimal observational array for dealing with challenges of El Niño-Southern Oscillation predictions due to diversities of El Niño. Climate Dynamics, 51(9-10):3 351-3 368,
Henderson D S, Kummerow C D, Berg W. 2018. ENSO Influence on TRMM tropical oceanic precipitation characteristics and rain rates. Journal of Climate, 31(10):3 979-3 998,
Hurrell J W, Holland M M, Gent P R, Ghan S, Kay J E, Kushner P J, Lamarque J F, Large W G, Lawrence D, Lindsay K, Lipscomb W H, Long M C, Mahowald N, Marsh D R, Neale R B, Rasch P, Vavrus S, Vertenstein M, Bader D, Collins W D, Hack J J, Kiehl J, Marshall S. 2013. The community earth system model:a framework for collaborative research. Bulletin of the American Meteorological Society, 94(9):1 339-1 360,
Izumo T, Lengaigne M, Vialard J, Luo J J, Yamagata T, Madec G. 2014. Influence of Indian Ocean dipole and Pacific recharge on following year's El Niño:interdecadal robustness. Climate Dynamics, 42(1-2):291-310,
Izumo T, Vialard J, Lengaigne M, Montegut C D B, Behera S K, Luo J J, Cravatte S, Masson S, Yamagata T. 2010. Influence of the state of the Indian Ocean dipole on the following year's El Niño. Nature Geoscience, 3(3):168-172,
Jin E K, Kinter III J L, Wang B, Park C K, Kang I S, Kirtman B P, KUG J S, Kumar A, LUO J J, Schemm J, Shukla J, Yamagata T. 2008. Current status of ENSO prediction skill in coupled ocean-atmosphere models. Climate Dynamics, 31(6):647-664,
Kirtman B P, Shukla J, Balmaseda M, Graham N, Penland C, Xue Y, Zebiak S. 2002. Current status of ENSO forecast skill:A report to the Climate Variability and Predictability(CLsIVAR) Numerical Experimentation Group (NEG). CLIVAR Working Group on Seasonal to Interannual Prediction.
Latif M, Barnett T P, Cane M A, Flugel M, Graham N E, Von Storch H, Xu J S, Zebiak S E. 1994. A review of ENSO prediction studies. Climate Dynamics, 9(4-5):167-179,
Liu L, Xie S P, Zheng X T, Li T, Du Y, Huang G, Yu W D. 2014. Indian Ocean variability in the CMIP5 multi-model ensemble:the zonal dipole mode. Climate Dynamics, 43(5-6):1 715-1 730,
Luo J J, Masson S, Behera S K, Yamagata T. 2008. Extended ENSO predictions using a fully coupled ocean-atmosphere model. Journal of Climate, 21(1):84-93,
Luo J J, Masson S, Behera S, Shingu S, Yamagata T. 2005. Seasonal climate predictability in a coupled OAGCM using a different approach for ensemble forecasts. Journal of Climate, 18(21):4 474-4 497,
Luo J J, Zhang R C, Behera S K, Masumoto Y, F Jin F F, Lukas R, Yamagata T. 2010. Interaction between El Niño and extreme Indian Ocean dipole. Journal of Climate, 23(3):726-742,
McPhaden M J, Busalacchi A J, Cheney R, Donguy J R, Gage K S, Halpern D, Ji M, Julian P, Meyers G, Mitchum G T, Niiler P P, Picaut J, Reynolds R W, Smith N, Takeuchi K. 1998. The tropical ocean-global atmosphere observing system:a decade of progress. Journal of Geophysical Research:Oceans, 103(C7):14 169-14 240,
Moore A M, Kleeman R. 1996. The dynamics of error growth and predictability in a coupled model of ENSO. Quarterly Journal of the Royal Meteorological Society, 122(534):1 405-1 446,
Morss R E, Battisti D S. 2004. Evaluating observing requirements for ENSO prediction:experiments with an intermediate coupled model. Journal of Climate, 17(16):3 057-3 073, 017<3057:EORFEP>2.0.CO;2.
Mu M, Duan W S, Chen D K, Yu W D. 2015. Target observations for improving initialization of high-impact ocean-atmospheric environmental events forecasting. National Science Review, 2(2):226-236,
Mu M, Duan W S, Wang B. 2003. Conditional nonlinear optimal perturbation and its applications. Nonlinear Process in Geophysics, 10(6):493-501.
Mu M, Wang Q, Duan W S, Jiang Z N. 2014. Application of conditional nonlinear optimal perturbation to targeted observation studies of the atmosphere and ocean. Journal of Meteorological Research, 28(5):923-933,
Mu M, Xu H, Duan W S. 2007. A kind of initial errors related to "spring predictability barrier" for El Niño events in Zebiak-cane model. Geophysical Research Letters, 34(3):L03709,
Mu M. 2013. Methods, current status, and prospect of targeted observation. Science China Earth Sciences, 56(12):1 997-2 005,
Philander S G H. 1983. El Niño southern oscillation phenomena. Nature, 302(5906):295-301.
Saji N H, Goswami B N, Vinayachandran P N, Yamagata T. 1999. A dipole mode in the tropical Indian Ocean. Nature, 401(6751):360-363,
Snyder C. 1996. Summary of an informal workshop on adaptive observations and FASTEX. Bulletin of the American Meteorological Society, 77(5):953-961.
Song Q, Vecchi G A, Rosati A J. 2007. Indian Ocean variability in the GFDL coupled climate model. Journal of Climate, 20(13):2 895-2 916,
Sun S W, Fang Y, Tana, Liu B C. 2014. Dynamical mechanisms for asymmetric SSTA patterns associated with some Indian Ocean Dipoles. Journal of Geophysical Research:Oceans, 119(5):3 076-3 097,
Tang Y M, Zhang R H, Liu T, Duan W S, Yang D J, Zheng F, Ren H L, Lian T, Gao C, Chen D K, Wu M. 2018. Progress in ENSO prediction and predictability study. National Science Review, 5(6):826-839,
Tippett M K, Barnston A G, Li S H. 2011. Performance of recent multimodel ENSO forecasts. Journal of Applied Meteorology and Climatology, 51(3):637-654,
Wajsowicz R C. 2004. Climate variability over the tropical Indian Ocean sector in the NSIPP seasonal forecast system. Journal of Climate, 17(24):4 783-4 804,
Wang B, Wu R G, Fu X H. 2000. Pacific-East Asian teleconnection:How Does ENSO affect east Asian Climate? Journal of Climate, 13(9):1 517-1 536,<1517:PEATHD>2.0.CO;2.
Wang Q, Mu M, Dijkstra H A. 2013. The similarity between optimal precursor and optimally growing initial error in prediction of Kuroshio large meander and its application to targeted observation. Journal of Geophysical Research:Oceans,118(2):869-884,
Webster P J, S Yang. 1992. Monsoon and ENSO:selectively interactive systems. Quarterly Journal of the Royal Meteorological Society, 118(507):877-926,
Wu G X, Meng W. 1998. Gearing between the indo-monsoon circulation and the pacific-walker circulation and the ENSO Part I:data analyses. Scientia Atmospherica Sinica, 22(4):470-480. (in Chinese with English abstract)
Yu Y S, Mu M, Duan W S, Gong T T. 2012. Contribution of the location and spatial pattern of initial error to uncertainties in El Niño predictions. Journal of Geophysical Research:Oceans, 117(C6):C06018,
Yuan D L, Wang J, Xu T F, Xu P, Hui Z, Zhao X, Luan Y H, Zheng W P, Yu Y Q. 2011. Forcing of the Indian Ocean dipole on the interannual variations of the tropical Pacific Ocean:roles of the Indonesian throughflow. Journal of Climate, 24(14):3 593-3 608,
Zebiak S E, Cane M A. 1987. A model El Niño Southern Oscillation. Monthly Weather Review, 115(10):2 262-2 278,<2262:ameno>;2.
Zhou Q, Duan W S, Mu M, Feng R. 2015. Influence of positive and negative Indian Ocean dipoles on ENSO via the Indonesian Throughflow:results from sensitivity experiments. Advances in Atmospheric Sciences, 32(6):783-793,
Zhou Q, Mu M, Duan W S. 2019. The initial condition errors occurring in the Indian Ocean temperature that cause "spring predictability barrier" for El Niño in the Pacific Ocean. Journal of Geophysical Research:Oceans, 124(2):1 244-1 261.
Zhu J S, Huang B H, Balmaseda M A, Kinter III J L, Peng P T, Hu Z Z, Marx L. 2013. Improved reliability of ENSO hindcasts with multi-ocean analyses ensemble initialization. Climate Dynamics, 41(9-10):2 785-2 795,
Copyright © Haiyang Xuebao