Cite this paper:
XU Kang, LIU Boqi, LIU Yu, WANG Weiqiang, HE Zhuoqi. Effects of monsoon onset vortex on heat budget in the mixed layer of the Bay of Bengal[J]. Journal of Oceanology and Limnology, 2020, 38(6): 1616-1631

Effects of monsoon onset vortex on heat budget in the mixed layer of the Bay of Bengal

XU Kang1,2,3, LIU Boqi4, LIU Yu5,6, WANG Weiqiang1,2,7, HE Zhuoqi1,2,8
1 State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China;
2 Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou), Guangzhou 511458, China;
3 Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China;
4 State Key Laboratory of Severe Weather and Institute of Climate System, Chinese Academy of Meteorological Sciences, Beijing 100081, China;
5 Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China;
6 University of Chinese Academy of Sciences, Beijing 100049, China;
7 Laboratory for Regional Oceanography and Numerical Modeling, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China;
8 State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
We investigated the effects of monsoon onset vortex (MOV) on the mixed layer heat budget in the Bay of Bengal (BOB) in spring 2003 using the reanalysis datasets. The results suggest that the solar radiation flux penetrating the mixed layer and the existence of barrier layer are both able to modulate the effects of MOV on the evolution of sea surface temperature (SST) in the BOB. Prior to the formation of BOB MOV, the local SST raised quickly due to mass of solar radiation reaching the sea surface under the clear-sky condition. Meanwhile, since the mixed layer was shallow before the onset of the Asian summer monsoon (ASM), some solar radiation flux could penetrate to directly heat the deeper water, which partly offset the warming effect of shortwave radiation. On the other hand, the in-situ SST started to cool due to the upwelling of cold water when the MOV generated over the BOB, along with the rapidly increased surface wind speed and its resultant deeper mixed layer. As the MOV developed and moved northward, the SST tended to decrease remarkably because of the strong upward surface latent heat flux over the BOB ascribed to the wind-evaporation mechanism. However, the MOV-related precipitation brought more fresh water into the upper ocean to produce a thicker barrier layer, whose thermal barrier effect damped the cooling effect of entrainment upwelling on the decrease tendency of the BOB SST. In other words, the thermal barrier effect could slow down the decreasing trend of the BOB SST even after the onset of ASM, which facilitated the further enhancement of the MOV.
Key words:    monsoon onset vortex (MOV)|Bay of Bengal|air-sea interaction|mixed layer depth|barrier layer thickness|heat budget analysis   
Received: 2019-03-11   Revised: 2019-07-19
PDF (2950 KB) Free
Print this page
Add to favorites
Email this article to others
Articles by XU Kang
Articles by LIU Boqi
Articles by LIU Yu
Articles by WANG Weiqiang
Articles by HE Zhuoqi
Behera S K, Deo A A, Salvekar P S. 1998. Investigation of mixed layer response to Bay of Bengal cyclone using a simple ocean model. Meteor. Atmos. Phys., 65(1-2):77-91,
Behringer D W, Xue Y. 2004. Evaluation of the global ocean data assimilation system at NCEP:the Pacific Ocean. In:Proceedings of the 8th Symposium on Integrated Observing and Assimilation Systems for Atmosphere, Oceans, and Land Surface, AMS 84th Annual Meeting, Washington State Convention and Trade Center. Amer. Meteor. Soc., Seattle, WA.
Chen D K, Busalacchi A J, Rothstein L M. 1994. The roles of vertical mixing, solar radiation, and wind stress in a model simulation of the sea surface temperature seasonal cycle in the tropical Pacific Ocean. J. Geophys. Res., 99(C10):20 345-20 359,
de Boyer Montégut C, Madec G, Fischer A S, Lazar A, Iudicone D. 2004. Mixed layer depth over the global ocean:an examination of profile data and a profile-based climatology. J. Geophys. Res., 109(C12):C12003,
Du Y, Qu T D, Meyers G, Masumoto Y, Sasaki H. 2005. Seasonal heat budget in the mixed layer of the southeastern tropical Indian Ocean in a high-resolution ocean general circulation model. J. Geophys. Res., 110(4):C04012,
Elsberry R L, Fraim T S, Trapnell Jr R N. 1976. A mixed layer model of the oceanic thermal response to hurricanes. J. Geophys. Res., 81(6):1 153-1 162,
Gadgil S, Kumar K R. 2006. The Asian monsoon-agriculture and economy. In:Wang B ed. The Asian Monsoon. Springer Praxis Books. Springer, Berlin, Heidelberg. p.651-683,
Godfrey J S, Lindstrom E J. 1989. The heat budget of the equatorial western Pacific surface mixed layer. J. Geophys. Res., 94(C6):8 007-8 017,
He J H, Sun C H, Liu Y Y, Matsumoto J, Li W J. 2007. Seasonal transition features of large-scale moisture transport in the Asian-Australian monsoon region. Adv. Atmos. Sci., 24(1):1-14,
He J H, Wen M, Wang L J, Xu H M. 2006. Characteristics of the onset of the Asian summer monsoon and the importance of Asian-Australian "land bridge". Adv. Atmos. Sci., 23(6):951-963,
Kanamitsu M, Ebisuzaki W, Woollen J, Yang S K, Hnilo J J, Fiorino M, Potter G L. 2002. NCEP-DOE AMIP-II reanalysis (R-2). Bull. Amer. Meteor. Soc., 83(11):1 631-1 644,
Kara A B, Rochford P A, Hurlburt H E. 2000a. Mixed layer depth variability and barrier layer formation over the North Pacific Ocean. J. Geophys. Res., 105(C7):16 783-16 801,
Kara A B, Rochford P A, Hurlburt H E. 2000b. An optimal definition for ocean mixed layer depth. J. Geophys. Res., 105(C7):16 803-16 821,
Kraus E B, Turner J S. 1967. A one-dimensional model of the seasonal thermocline II. The general theory and its consequences. Tellus, 19(1):98-106,
Lau K M, Wu H T, Yang S. 1998. Hydrologic processes associated with the first transition of the Asian summer monsoon:a pilot satellite Study. Bull. Amer. Meteor. Soc., 79(9):1 871-1 882,<1871:HPAWTF>2.0.CO;2.
Lewis M R, Carr M E, Feldman G C, Esaias W, McClain C. 1990. Influence of penetrating solar radiation on the heat budget of the equatorial Pacific Ocean. Nature, 347(6293):543-545,
Liu B Q, Liu Y M, Wu G X, Yan J H, He J H, Ren S L. 2015. Asian summer monsoon onset barrier and its formation mechanism. Climate Dyn., 45(3-4):711-726,
Liu B Q, Wu G X, Mao J Y, He J H. 2013. Genesis of the South Asian High and its impact on the Asian summer monsoon onset. J. Climate, 26(9):2 976-2 991.
Liu Y M, Chan J C L, Mao J Y, Wu G X. 2002. The role of Bay of Bengal convection in the onset of the 1998 South China Sea summer monsoon. Mon. Wea. Rev., 130(11):2 731-2 744,<2731:TROBOB>2.0.CO;2.
Lukas R, Lindstrom E. 1991. The mixed layer of the western equatorial Pacific Ocean. J. Geophys. Res., 96(S01):3 343-3 357,
Mao J Y, Wu G X. 2011. Barotropic process contributing to the formation and growth of tropical cyclone Nargis. Adv. Atmos. Sci., 28(3):483-491,
Mao J, Wu G. 2007. Interannual variability in the onset of the summer monsoon over the Eastern Bay of Bengal. Theor. Appl. Climatol., 89(3-4):155-170,
McPhaden M J, Foltz G R, Lee T, Murty V S N, Ravichandran M, Vecchi G A, Vialard J, Wiggert J D, Yu L S. 2009. Ocean-atmosphere interactions during cyclone Nargis. Eos, Transactions American Geophysical Union, 90(7):53-54,
Ohlmann J C, Siegel D A, Gautier C. 1996. Ocean mixed layer radiant heating and solar penetration:a global analysis. J. Climate, 9(10):2 265-2 280,<2265:OMLRHA>2.0.CO;2.
Pacanowski R C, Griffies S M. 1999. The MOM3 Manual. NOAA/Geophysical Fluid Dynamics Laboratory Technical Report No. 4, NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, USA, 680p.
Prasanna Kumar S, Narvekar J. 2005. Seasonal variability of the mixed layer in the central Arabian Sea and its implication on nutrients and primary productivity. Deep Sea Res. II, 52(14-15):1 848-1 861,
Price J F. 1981. Upper ocean response to a hurricane. J. Phys. Oceanogr., 11(2):153-175,<0153:UORTAH>2.0.CO;2.
Qiu B. 2000. Interannual variability of the kuroshio extension system and its impact on the wintertime SST field. J. Phys. Oceanogr., 30(6):1 486-1 502,<1486:IVOTKE>2.0.CO;2.
Qu T D. 2003. Mixed layer heat balance in the western North Pacific. J. Geophys. Res., 108(C7):3 242,
Reynolds R W, Rayner N A, Smith T M, Stokes D C, Wang W Q. 2002. An improved in situ and Satellite SST analysis for climate. J. Climate, 15(13):1 609-1 625,<1609:AIISAS>2.0.CO;2.
Saha S, Nadiga S, Thiaw C, Wang J, Wang W, Zhang Q, Van den Dool H M, Pan H L, Moorthi S, Behringer D, Stokes D, Peña M, Lord S, White G, Ebisuzaki W, Peng P, Xie P. 2006. The NCEP climate forecast system. J. Climate, 19(15):3 483-3 517,
Sakaida F, Kawamura H, Toba Y. 1998. Sea surface cooling caused by typhoons in the Tohoku area in August 1989. J. Geophys. Res., 103(C1):1 053-1 065,
Santoso A, Sen Gupta A, England M H. 2010. Genesis of Indian ocean mixed layer temperature anomalies:a heat budget analysis. J. Climate, 23(20):5 375-5 403,
Sengupta D, Ray P K, Bhat G S. 2002. Spring warming of the eastern Arabian sea and Bay of Bengal from Buoy data. Geophys. Res. Lett., 29(15):1 734,
Shi Y Y, Huang W Y, Wang B, Yang Z F, He X S, Qiu T P. 2018. Origin of warm SST bias over the Atlantic cold tongue in the coupled climate model FGOALS-g2. Atmosphere, 9(7):275,
Shi Y Y, Wang B, Huang W Y. 2017. A ‘self-adjustment’ mechanism for mixed-layer heat budget in the equatorial Atlantic cold tongue. Atmos. Sci. Lett., 18(2):82-87,
Sprintall J, Tomczak M. 1992. Evidence of the barrier layer in the surface layer of the tropics. J. Geophys. Res., 97(C5):7 305-7 316,
Sutton P J, Worcester P F, Masters G, Cornuelle B D, Lynch J F. 1993. Ocean mixed layers and acoustic pulse propagation in the Greenland Sea. J. Acoustical Soc. Amer., 94(3):1 517-1 526,
Swenson M S, Hansen D V. 1999. Tropical Pacific Ocean mixed layer heat budget:the Pacific cold tongue. J. Phys. Oceanogr., 29(1):69-81,<0069:TPOMLH>2.0.CO;2.
Trenberth K E, Hurrell J W, Stepaniak D P. 2006. The Asian monsoon:global perspectives. In:Wang B ed. The Asian Monsoon. Springer, Berlin, Heidelberg. p.67-87,
Vinayachandran P N, Shankar D, Kurian J, Durand F, Shenoi S S C. 2007. Arabian Sea mini warm pool and the monsoon onset vortex. Curr. Sci., 93(2):203-214.
Wang B, Lin H. 2002. Rainy season of the Asian-Pacific summer monsoon. J. Climate, 15(4):386-398,<0386:RSOTAP>2.0.CO;2.
Wang B, Wu R G, Lau K M. 2001. Interannual variability of the Asian summer monsoon:contrasts between the Indian and the western North Pacific-East Asian monsoons. J. Climate, 14(20):4 073-4 090,<4073:IVOTAS>2.0.CO;2.
Wang X, Zhang R W, Huang J, Zeng L L, Huang F. 2017. Biases of five latent heat flux products and their impacts on mixed-layer temperature estimates in the South China Sea. J. Geophys. Res., 122(6):5 088-5 104,
Wang Z Q, Li G, Yang S. 2018. Origin of Indian summer monsoon rainfall biases in CMIP5 multimodel ensemble. Climate Dyn., 51(1-2):755-768,
Wu G X, Guan Y, Liu Y M, Yan J H, Mao J Y. 2012. Air-sea interaction and formation of the Asian summer monsoon onset vortex over the Bay of Bengal. Climate Dyn., 38(1-2):261-279,
Wu G X, Guan Y, Wang T M, Liu Y M, Yan J H, Mao J Y. 2011. Vortex genesis over the Bay of Bengal in spring and its role in the onset of the Asian Summer Monsoon. Sci. China Earth Sci., 54(1):1-9,
Wu G X, Liu Y M. 2000. Thermal adaptation, overshooting, dispersion, and subtropical anticyclone Part I:thermal adaptation and Overshooting. Chin. J. Atmos. Sci., 24(4):433-446. (in Chinese with English abstract)
Wu G X, Zhang Y S. 1998. Tibetan Plateau forcing and the timing of the monsoon onset over South Asia and the South China Sea. Mon. Wea. Rev., 126(4):913-927,<0913:TPFATT>2.0.CO;2.
Xie P P, Arkin P A. 1997. Global precipitation:a 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78(11):2 539-2 558.<2539:gpayma>;2.
You Y Z. 1995. Salinity variability and its role in the barrier-layer formation during TOGA-COARE. J. Phys. Oceanogr., 25(11):2 778-2 807,<2778:SVAIRI>2.0.CO;2.
Zeng Z H, Chen L T. 2011. Numerical experiments of the effect of oceanic mixing layer depth on TC structure and intensity changes. Plateau Meteor., 30(6):1 584-1 593.(in Chinese with English abstract)
Zhang R W, Wang X, Wang C Z. 2018. On the simulations of global oceanic latent heat flux in the CMIP5 multimodel ensemble. J. Climate, 31(17):7 111-7 128,
Copyright © Haiyang Xuebao