Cite this paper:
TAN Hongjian, CAI Rongshuo, HUO Yunlong, GUO Haixia. Projections of changes in marine environment in coastal China seas over the 21st century based on CMIP5 models[J]. Journal of Oceanology and Limnology, 2020, 38(6): 1676-1691

Projections of changes in marine environment in coastal China seas over the 21st century based on CMIP5 models

TAN Hongjian, CAI Rongshuo, HUO Yunlong, GUO Haixia
Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
Abstract:
The increases of atmospheric carbon dioxide and other greenhouse gases have caused fundamental changes to the physical and biogeochemical properties of the oceans, and it will continue to occur in the foreseeable future. Based on the outputs of nine Earth System Models from the fifth phase of the Coupled Model Intercomparison Project (CMIP5), in this study, we provided a synoptic assessment of future changes in the sea surface temperature (SST), salinity, dissolved oxygen (DO), seawater pH, and marine net primary productivity (NPP) in the coastal China seas over the 21st century. The results show that the mid-high latitude areas of the coastal China seas (East China Seas (ECS), including the Bohai Sea, Yellow Sea, and East China Sea) will be simultaneously exposed to enhanced warming, deoxygenation, acidification, and decreasing NPP as a consequence of increasing greenhouse gas emissions. The magnitudes of the changes will increase as the greenhouse gas concentrations increase. Under the high emission scenario (Representative Concentration Pathway 8.5), the ECS will experience an SST increase of 3.24±1.23℃, a DO concentration decrease of 10.90±3.92 μmol/L (decrease of 6.3%), a pH decline of 0.36±0.02, and a NPP reduction of -17.7±6.2 mg/(m2·d) (decrease of 12.9%) relative to the current levels (1980-2005) by the end of this century. The co-occurrence of these changes and their cascade effects are expected to induce considerable biological and ecological responses, thereby making the ECS among the most vulnerable ocean areas to future climate change. Despite high uncertainties, our results have important implications for regional marine assessments.
Key words:    Coupled Model Intercomparison Project (CMIP5)|sea surface temperature (SST)|dissolved oxygen (DO)|seawater pH|net primary productivity   
Received: 2019-05-27   Revised: 2019-08-29
Tools
PDF (9548 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by TAN Hongjian
Articles by CAI Rongshuo
Articles by HUO Yunlong
Articles by GUO Haixia
References:
Allison E H, Perry A L, Badjeck M C, Adger W N, Brown K, Conway D, Halls A S, Pilling G, Reynolds J D, Andrew N L, Dulvy N. 2009. Vulnerability of national economies to the impacts of climate change on fisheries. Fish and Fisheries, 10(2):173-196.
Behrenfeld M J, Falkowski P G. 1997. A consumer's guide to phytoplankton primary productivity models. Limnology and Oceanography, 42(7):1 479-1 491.
Bopp L, Resplandy L, Orr J C, Doney S, Dunne J, Gehlen M, Halloran P, Heinze C, Ilyina T, Seferian R, Tjiputra J, Vichi M. 2013. Multiple stressors of ocean ecosystems in the 21st century:Projections with CMIP5 models. Biogeosciences, 10:6 225-6 245.
Cai R S, Tan H J, Qi Q H. 2016. Impacts of and adaptation to inter-decadal marine climate change in coastal China seas. International Journal of Climatology, 36(11):3 770-3 780.
Cai R S, Tan H J, Kontoyiannis H. 2017. Robust surface warming in offshore China seas and its relationship to the East Asian Monsoon wind field and ocean forcing on interdecadal time scales. Journal of Climate, 30(22):8 987-9 005, https://doi.org/10.1175/JCLI-D-16-0016.1.
Cannaby H, Fach B A, Arkin S S, Salihoglu B. 2015. Climatic controls on biophysical interactions in the Black Sea under present day conditions and a potential future (A1B) climate scenario. Journal of Marine Systems, 141:149-166.
Cao L, Zhang H. 2017. The role of biological rates in the simulated warming effect on oceanic CO2 uptake. Journal of Geophysical Research:Biogeosciences, 122(5):1 098-1 106.
Christian J R, Arora V K, Boer G J, Curry C L, Zahariev K, Denman K L, Flato G M, Lee W G, Merryfield W J, Roulet N T, Scinocca J F. 2010. The global carbon cycle in the Canadian Earth System Model (CanESM1):preindustrial control simulation. Journal of Geophysical Research:Biogeosciences, 115(G3):G03014, https://doi.org/10.1029/2008JG000920.
Collins W J, Bellouin N, Doutriaux-Boucher M, Gedney N, Halloran P, Hinton T, Hughes J, Jones C D, Joshi M, Liddicoat S, Martin G, O'Connor F, Rae J, Senior C, Sitch S, Totterdell I, Wiltshire A, Woodward S. 2011. Development and evaluation of an Earth-System modelHadGEM2. Geoscientific Model Development, 4(4):1 051-1 075.
Dai M H, Cao Z M, Guo X H, Zhai W D, Liu Z Y, Yin Z Q, Xu Y P, Gan J P, Hu J H, Du C J. 2013. Why are some marginal seas sources of atmospheric CO2? Geophysical Research Letters, 40(10):2 154-2 158.
Dufresne J L, Foujols M A, Denvil S, Caubel A, Marti O, Aumont O, Balkanski Y, Bekki S, Bellenger H, Benshila R, Bony S, Bopp L, Braconnot P, Brockmann P, Cadule P, Cheruy F, Codron F, Cozic A, Cugnet D, De Noblet N, Duvel J P, Ethé C, Fairhead L, Fichefet T, Flavoni S, Friedlingstein P, Grandpeix J Y, Guez L, Guilyardi E, Hauglustaine D, Hourdin F, Idelkadi A, Ghattas J, Joussaume S, Kageyama M, Krinner G, Labetoulle S, Lahellec A, Lefebvre M P, Lefevre F, Levy C, Li Z X, Lloyd J, Lott F, Madec G, Mancip M, Marchand M, Masson S, Meurdesoif Y, Mignot J, Musat I, Parouty S, Polcher J, Rio C, Schulz M, Swingedouw D, Szopa S, Talandier C, Terray P, Viovy N, Vuichard N. 2013. Climate change projections using the IPSL-CM5 earth system model:from CMIP3 to CMIP5. Climate Dynamics, 40(9-10):2 123-2 165.
Dunne J P, John J G, Shevliakova E, Stouffer R J, Krasting J P, Malyshev S L, Milly P C D, Sentman L T, Adcroft A J, Cooke W, Dunne K A, Griffies S M, Hallberg R W, Harrison M J, Levy H, Wittenberg A T, Phillips P J, Zadeh N. 2013. GFDL's ESM2 global coupled climate-carbon Earth System Models. Part II:Carbon system formulation and baseline simulation characteristics. Journal of Climate, 26(7):2 247-2 267.
Durack P J, Wijffels S E, Matear R J. 2012. Ocean salinities reveal strong global water cycle intensification during 1950 to 2000. Science, 336(6080):455-458.
Gobler C J, Doherty O M, Hattenrath-Lehmann T K, Griffith A W, Kang Y, Litaker R W. 2017. Ocean warming since 1982 has expanded the niche of toxic algal blooms in the North Atlantic and North Pacific oceans. Proceedings of the National Academy of Sciences of the United States of America, 114(19):4 975-4 980, https://doi.org/10.1073/pnas.1619575114.
Hoegh-Guldberg O, Bruno J F. 2010. The impact of climate change on the world's marine ecosystems. Science, 328(5985):1 523-1 528.
Holt J, Schrum C, Cannaby H, Daewel U, Allen I, Artioli Y, Artioli L, Bopp L, Butenschon M, Fach B A, Harle J, Pushpadas D, Salihoglu B, Wakelin S. 2016. Potential impacts of climate change on the primary production of regional seas:a comparative analysis of five European seas. Progress in Oceanography, 140:91-115.
Ilyina T, Six K D, Segschneider J, Maier-Reimer E, LI H M, Núñez-Riboni I. 2013. Global ocean biogeochemistry model HAMOCC:Model architecture and performance as component of the MPI-Earth System Model in different CMIP5 experimental realizations. Journal of Advances in Modeling Earth Systems, 5(2):287-315.
Intergovernmental Panel on Climate Change. 2014. Climate Change 2013-the Physical Science Basis:Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.
Kirtman B, Power S B, Adedoyin J A, Boer J G, Bojariu R, Camilloni I, Doblas-Reyes F J, Fiore A M, Kimoto M, Meehl G A, Prather M, Sarr A, Schär C, Sutton R, Van Oldenborgh J G, Vecchi G, Wang H J. 2013. Near-term climate change:projections and predictability. In:Stocker T F, Qin D H, Plattner G K, Tignor M M B, Allen S K, Boschung J, Nauels A, Xia Y, Bex V, Midgley P M eds. Climate Change 2013-The Physical Science Basis:Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
Kitoh A. 2006. Asian monsoons in the future. In:Wang B ed. The Asian Monsoon. Springer, Berlin, Heidelberg.
Lauvset S K, Key R M, Olsen A, van Heuven S, Velo A, Lin X H, Schirnick C, Kozyr A, Tanhua T, Hoppema M, Jutterström S, Steinfeldt R, Jeansson E, Ishii M, Perez F F, Suzuki T, Watelet S. 2016. A new global interior ocean mapped climatology:The 1°×1°GLODAP version 2. Earth System Science Data, 8:325-340.
Li A, Yu F, Diao X Y. 2015. Interannual salinity variability of the Northern Yellow Sea cold water mass. Chinese Journal of Oceanology and Limnology, 33(3):779-789.
Li L, Li Q. 2010. Effects of stocking density, temperature, and salinity on larval survival and growth of the red race of the sea cucumber Apostichopus japonicus (Selenka). Aquaculture International, 18(3):447-460.
Lozier M S, Dave A C, Palter J B, Gerber L M, Barber R T. 2011. On the relationship between stratification and primary productivity in the North Atlantic. Geophysical Research Letters, 38(18):L18609.
Mora C, Wei C L, Rollo A, Amaro T, Baco A R, Billett D, Bopp L, Chen Q, Collier M, Danovaro R, Gooday A J, Grupe B M, Halloran P R, Ingels J, Jones D O B, Levin L A, Nakano H, Norling K, Ramirez-Llodra E, Rex M, Ruhl H A, Smith C R, Sweetman A K, Thurber A R, Tjiputra J F, Usseglio P, Watling L, Wu T W, Yasuhara M. 2013. Biotic and human vulnerability to projected changes in ocean biogeochemistry over the 21st century. PLoS Biology, 11(10):e1001682, https://doi.org/10.1371/journal.pbio.100168.
Rayner N A, Parker D E, Horton E B, Folland C K, Alexander L V, Rowell D P, Kent E C, Kaplan A. 2003. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. Journal of Geophysical Research, 108(D14):4 407, https://doi.org/10.1029/2002JD002670.
Tan H J, Cai R S, Yan X H. 2016. Projected 21st century sea surface temperature over offshore China based on IPCCCMIP5 models. Journal of Applied Oceanography, 35(4):451-458. (in Chinese with English abstract)
Taylor K E, Stouffer R J, Meehl G A. 2012. An overview of CMIP5 and the experiment design. Bulletin of the American Meteorological Society, 93(4):485-498.
Tian Y J, Kidokoro H, Watanabe T. 2006. Long-term changes in the fish community structure from the Tsushima warm current region of the Japan/East Sea with an emphasis on the impacts of fishing and climate regime shift over the last four decades. Progress in Oceanography, 68(2-4):217-237.
Tjiputra J F, Roelandt C, Bentsen M, Lawrence D M, Lorentzen T, Schwinger J, Seland Ø, Heinze C. 2013. Evaluation of the carbon cycle components in the Norwegian Earth System Model (NorESM). Geoscientific Model Development, 6(2):301-325.
Vichi M, Manzini E, Fogli P G, Alessandri A, Patara L, Scoccimarro E, Masina S, Navarra A. 2011. Global and regional ocean carbon uptake and climate change:Sensitivity to a substantial mitigation scenario. Climate Dynamics, 37(9-10):1 929-1 947.
Voldoire A, Sanchez-Gomez E, y Mélia D S, Decharme B, Cassou C, Sénési S, Valcke S, Beau I, Alias A, Chevallier M, Déqué M, Deshayes J, Deshayes H, Fernandez E, Madec G, Maisonnave E, Moine M P, Planton S, SaintMartin D, Szopa S, Tyteca S, Alkama R, Belamari S, Braun A, Coquart L, Coquart F. 2013. The CNRM-CM5.1 global climate model:Description and basic evaluation. Climate Dynamics, 40(9-10):2 091-2 121.
Wang Y Q, Lin X P. 2018. A preliminary study on the trends and mechanism of the upper ocean salinity in the East China Seas during 1976-1996. Periodical of Ocean University of China, 48(11):11-18. (in Chinese with English abstract)
Watanabe S, Hajima T, Sudo K, Nagashima T, Takemura T, Okajima H, Nozawa T, Kawase H, Abe M, Yokohata T, Ise T, Sato H, Kato E, Takata K, Emori S, Kawamiya M. 2011. MIROC-ESM 2010:Model description and basic results of CMIP5-20c3m experiments. Geoscientific Model Development, 4(4):845-872.
Wei Q S, Wang B D, Yu Z G, Chen J F, Xue L. 2017. Mechanisms leading to the frequent occurrences of hypoxia and a preliminary analysis of the associated acidification off the Changjiang Estuary in summer. Science China Earth Sciences, 60(2):158-179.
Xie S P, Hafner J, Tanimoto Y, Liu W T, Tokinaga H, Xu H M. 2002. Bathymetric effect on the winter sea surface temperature and climate of the Yellow and East China Seas. Geophysical Research Letters, 29(24):2 228, https://doi.org/10.1029/2002GL015884.
Zeebe R E, Zachos J C, Caldeira K, Tyrrell T. 2008. Carbon emissions and acidification. Science, 321(5885):51-52.
Copyright © Haiyang Xuebao