Cite this paper:
SUI Fengyang, ZANG Shuying, FAN Yawen, LU Xinxin, HUI Hongkuan. Establishment of a diatom-total phosphorus transfer function for lakes on the Songnen Plain in northeast China[J]. Journal of Oceanology and Limnology, 2020, 38(6): 1771-1786

Establishment of a diatom-total phosphorus transfer function for lakes on the Songnen Plain in northeast China

SUI Fengyang1, ZANG Shuying1, FAN Yawen2, LU Xinxin2, HUI Hongkuan3
1 Key Laboratory of Remote Sensing Monitoring of Geographic Environment, College of Heilongjiang Province, Harbin Normal University, Harbin 150025, China;
2 Key Laboratory of Biodiversity of Aquatic Organisms, Harbin Normal University, Harbin 150025, China;
3 Qilu Normal University, Jinan 250200, China
Abstract:
To understand the relationship between planktonic diatoms and environmental variables in the lakes on the Songnen Plain, northeast (NE) China, we investigated water quality and planktonic diatoms from 71 sampling points in 27 lakes, based on which Canonical Correspondence Analysis (CCA) was conducted. The result show that planktonic diatoms displayed certain responses to environment gradients, and the total phosphorus (TP) explained the maximum variation of planktonic diatom species among the 15 environmental variables, suggesting that TP was the most important and significant environmental parameter affecting the distribution of diatom species. In addition, we established a diatom-total phosphorus transfer (DTPT) function, of which component 5 of the weighted averaging partial least squares regression (WAPLS) was chosen to and compared with a series of weighted average regression (WA) models and WA-PLS models. According to the jackknifing statistical test, the component 5 of WA-PLS models provided a lower root-mean-square error prediction (RMSEP=0.202) and a higher correlation coefficient between observation and prediction (R2_Jack=0.759). After deletion of three outliers, the root-mean-square error prediction of the DTPT function was reduced (RMSEP=0.169) while the correlation coefficient between observation and prediction was increased (R2_Jack=0.823). Therefore, this DTPT function performed better than other regional TP models in the world. However, it remains demanding for expanding the background dataset to improve the prediction ability of the model.
Key words:    Songnen Plain|diatom|total phosphorus|transfer function   
Received: 2019-09-07   Revised: 2019-10-11
Tools
PDF (1399 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by SUI Fengyang
Articles by ZANG Shuying
Articles by FAN Yawen
Articles by LU Xinxin
Articles by HUI Hongkuan
References:
Adler S, Hübener T. 2007. Spatial variability of diatom assemblages in surface lake sediments and its implications for transfer functions. Journal of Paleolimnology, 37(4):573-590.
Andrén E, Telford R J, Jonsson P. 2017. Reconstructing the history of eutrophication and quantifying total nitrogen reference conditions in Bothnian Sea coastal waters. Estuarine, Coastal and Shelf Science, 198:320-328.
Battarbee R W, Grytnes J A, Thompson R, Appleby P G, Catalan J, Korhola A, Birks H J B, Heegaard E, Lami A. 2002. Comparing palaeolimnological and instrumental evidence of climate change for remote mountain lakes over the last 200 years. Journal of Paleolimnology, 28(1):161-179.
Battarbee R W. 1999. The importance of palaeolimnology to lake restoration. Hydrobiologia, 395-396:149-159.
Bennion H. 1994. A Diatom-Phosphorus transfer function for shallow, eutrophic ponds in southeast England. Hydrobiologia, 275-276(1):391-410.
Bigler C, Hall R I. 2002. Diatoms as indicators of climatic and limnological change in Swedish Lapland:a 100-lake calibration set and its validation for paleoecological reconstructions. Journal of Paleolimnology, 27(1):97-115.
Birks H J B, Line J M, Juggins S, Stevenson A C, Ter Braak C J F. 1990. Diatoms and pH reconstruction. Philosophical transactions of the Royal Society B:Biological Sciences, 327(1240):263-278.
Birks H J B. 1995. Quantitative palaeoenvironmental reconstructions. In:Maddy D, Brew J S eds. Statistical Modelling of Quaternary Science Data. Cambridge University Press, Cambridge, UK. p.161-236.
Blumenshine S C, Vadeboncoeur Y, Lodge D M, Cottingham K L, Knight S E. 1997. Benthic-pelagic links:responses of benthos to water-column nutrient enrichment. Journal of the North American Benthological Society, 16(3):466-479.
Cameron N G, Birks H J B, Jones V J, Berges F, Catalan J, Flower R J, Garcia J, Kawecka B, Koinig K A, Marchetto A, Sánchez-Castillo P, Schmidt R, Šiško M, Solovieva N, Štefková E, Toro M. 1999. Surface-sediment and epilithic diatom pH calibration sets for remote European mountain lakes (AL:PE Project) and their comparison with the Surface Waters Acidification Programme (SWAP) calibration set. Journal of Paleolimnology, 22(3):291-317.
Chen G J, Dalton C, Leira M, Taylor D. 2008. Diatom-based total phosphorus (TP) and pH transfer functions for the Irish Ecoregion. Journal of Paleolimnology, 40(1):143-163.
Craig A. 2018. An investigation into the ecological effects a medieval settlement had on the White Loch of Myrton, Scotland using diatom analysis. Meliora:International Journal of Student Sustainability Research, 1(2), http://doi.org/10.22493/Meliora.1.2.0009.
Dai W N, Tan J W, Li Y, et al. 2018. Research progress on water environment treatment and protection of typical wetland in Songnen plain. Protection Forest Science and Technology, (7):55-57. (in Chinese with English abstract)
Denicola D M, De Eyto E, Wemaere A, Irvine K. 2004. Using epilithic algal communities to assess trophic status in Irish lakes. Journal of Phycology, 40(3):481-495.
Dong X H, Yang X D, Wang R, Pan H X. 2006. A diatom-total phosphorus transfer function for lakes in the middle and lower reaches of Yangtze River. Journal of Lake Science, 18(1):1-12. (in Chinese with English abstract)
Duthie H C, Yang J R, Edwards T W D, et al. 1996. Hamilton Harbour, Ontario:8300 years of limnological and environmental change inferred from microfossil and isotopic analyses. Journal of Paleolimnology, 15(1):79-97.
Enache M, Prairie Y T. 2002. WA-PLS diatom-based pH, TP and DOC inference models from 42 lakes in the Abitibi clay belt area (Québec, Canada). Journal of Paleolimnology, 27(2):151-171.
Finkelstein S A, Bunbury J, Gajewski K, Wolfe A P, Adams J K, Devlin J E. 2014. Evaluating diatom-derived Holocene pH reconstructions for Arctic lakes using an expanded 171-lake training set. Journal of Quaternary Science, 29(3):249-260.
Fritz S C, Juggins S, Battarbee R W, Engstrom D R. 1991. Reconstruction of past changes in salinity and climate using a diatom-based transfer function. Nature, 352(6337):706-708.
Fritz S C, Kingston J C, Engstrom D R. 1993. Quantitative trophic reconstruction from sedimentary diatom assemblages:a cautionary tale. Freshwater Biology, 30(1):1-23.
Hall R I, Smol J P. 1999. Diatoms as indicators of lake eutrophication. In:Stoermer E F, Smol J P eds. The Diatoms:Applications for the Environmental and Earth Sciences. Cambridge University Press, Cambridge, UK. p.128-168.
Hansson L A. 1992. Factors regulating periphytic algal biomass. Limnology and Oceanography, 37(2):322-328.
Hu H J, Wei Y X. 2006. Systematics, Taxonomy and Ecology:the Freshwater Algae of China. Science Press, Beijing, China. 1023p. (in Chinese)
Huang C, Gu X H, Hu W Y. 2000. Culturing of Scenedesmus obliquus in saline-alkali waters and its biological purification. Journal of Lake Sciences, 12(1):63-67. (in Chinese with English abstract)
Huang Y Y, Wang X T, Liu W, Huang S F, Lei Y D. 2013. Evaluation of a benthic diatom-conductivity transfer function model from Dongjiang basin. Ecological Science, 32(5):564-570. (in Chinese with English abstract)
Jones V J, Juggins S. 1995. The construction of a diatom-based chlorophyll a transfer function and its application at three lakes on Signy Island (maritime Antarctic) subject to differing degrees of nutrient enrichment. Freshwater Biology, 34(3):433-445.
Jongman R H G, ter Braak C J F, van Tongeren O F R. 1995. Data Analysis in Community and Landscape Ecology. Cambridge University Press, Cambridge, UK. p.91-164.
Juggins S, Anderson N J, Hobbs J M R, Heathcote A J. 2013.
Reconstructing epilimnetic total phosphorus using diatoms:statistical and ecological constraints. Journal of Paleolimnology, 49(3):373-390.
Juggins S. 2003. C2 User Guide:Software for Ecological and Palaeoecological Data Analysis and Visualisation. University of Newcastle, Newcastle, UK. p.7-70.
Juggins S. 2013. Quantitative reconstructions in palaeolimnology:new paradigm or sick science? Quaternary Science Reviews, 64:20-32.
Kociolek J P, Balasubramanian K, Blanco S, Coste M, Ector L, Liu Y, Kulikovskiy M, Lundholm N, Ludwig T, Potapova M, Rimet F, Sabbe K, Sala S, Sar E, Taylor J, Van De Vijver B, Wetzel C E, Williams D M, Witkowski A, Witkowski J. 2019. DiatomBase. http://www.diatombase.org.Accessed on 2019-10-13.
Krammer K, Lange-Bertalo H. 1997a. Bacillariophyceae. 1. Teil:Naviculaceae. In:Ettl H, Gerloff J, Heynig H, Mollenhauer D eds. Süsswasserflora von Mitteleuropa, Band 2/1. Spektrum Akademischer Verlag, Heidelberg, Berlin. p.1-876.
Krammer K, Lange-Bertalo H. 1997b. Bacillariophyceae. 2. Teil:Bacillariaceae, Epithemiaceae, Surirellaceae. In:Ettl H, Gerloff J, Heynig H, Mollenhauer D eds. Süsswasserflora von Mitteleuropa, Band 2/2. Spektrum Akademischer Verlag, Heidelberg, Berlin. p.1-611.
Krammer K, Lange-Bertalo H. 2004a. Bacillariophyceae. 3. Teil:Centrales, Fragilariaceae, Eunotiaceae. In:Ettl H, Gerloff J, Heynig H, Mollenhauer D eds. Süsswasserflora von Mitteleuropa, Band 2/3. Spektrum Akademischer Verlag, Heidelberg, Berlin. p.1-599.
Krammer K, Lange-Bertalo H. 2004b. Bacillariophyceae. 4. Teil:Achanathaceae, Kritische Ergänzungen zu Achnanthes s. l., Navicula s. str., Gomphonema. Gesamtliteraturverzeichnis Teil 1-4. In:Ettl H, Gerloff J, Heynig H, Mollenhauer D eds. Süsswasserflora von Mitteleuropa, Band 2/4. Spektrum Akademischer Verlag, Heidelberg, Berlin. p.1-468.
Krawczyk D W, Witkowski A, Moros M, Lloyd J M, Høyer J L, Miettinen A, Miettinen A. 2017. Quantitative reconstruction of Holocene sea ice and sea surface temperature off West Greenland from the first regional diatom data set. Paleoceanography and Paleoclimatology, 32(1):18-40.
Liu B, McLean C E, Long D T, Steinman A D, Stevenson R J. 2018. Eutrophication and recovery of a Lake inferred from sedimentary diatoms originating from different habitats. Science of the Total Environment, 628-629:1 352-1 361.
Liu S S, Chen S Y, Yao M, Zhang Q H. 2012. Lakes sedimentary diatom application in environmental study. Journal of Linyi University, 34(6):78-83. (in Chinese with English abstract)
Luostarinen T, Miettinen A, Husum K. 2017. Variability of sea surface temperature and sea ice extent in Kongsfjorden, Svalbard during the last 2000 years. In:Proceedings of the 19th EGU General Assembly. EGU, Vienna, Austria. 1007p.
Ma L S. 2018. Study on the Distribution of Diatoms and Their Correlation with Environmental Factors in Sediments of Wetlands in the Sanjiang Plain. Chinese Academy of Sciences, China, Beijing. 101p. (in Chinese with English abstract)
Marchetto A, Musazzi S. 2001. Comparison between sedimentary and living diatoms in Lago Maggiore (N. Italy):implications of using transfer function. Journal of Limnology, 60(1):19-26.
Miettinen J O. 2003. A diatom-total phosphorus transfer function for freshwater lakes in southeastern Finland, including cross-validation with independent test lakes. Boreal Environment Research, 8:215-228.
Philibert A, Prairie Y T. 2002. Is the introduction of benthic species necessary for open-water chemical reconstruction in diatom-based transfer functions? Canadian Journal of Fisheries and Aquatic Sciences, 59(6):938-951.
Pokras E M, Molfino B. 1986. Oceanographic control of diatom abundances and species distributions in surface sediments of the tropical and southeast Atlantic. Marine Micropaleontology, 10(1-3):165-188.
Potapova M G, Charles D F, Ponader K C, Winter D M. 2004. Quantifying species indicator values for trophic diatom indices:a comparison of approaches. Hydrobiologia, 517(1-3):25-41.
Potapova M G, Minerovic A D, Veselá J, Smith C R. 2019. Diatom New Taxon File at the Academy of Natural Sciences (DNTF-ANS), Philadelphia. http://symbiont.ansp.org/dntf/.Accessed on 2019-10-13.
Qi Y Z, Li J Y. 2004. Flora Algarum Sinicarum Aquae Dulcis. Science Press, Beijing, China. p.1-161. (in Chinese)
Reavie E D, Heathcote A J, Chraïbi V L S. 2014. Laurentian Great Lakes phytoplankton and their water quality characteristics, including a diatom-based model for paleoreconstruction of phosphorus. PLoS One, 9(8):e104705.
State Environmental Protection Administration of China. 2002. Monitoring and Analysis Method of Water and Waste Water. China Environmental Science Press, Beijing, China. 836p. (in Chinese)
Tammelin M, Kauppila T, Viitasalo M. 2017. Factors controlling recent diatom assemblages across a steep local nutrient gradient in central-eastern Finland.Hydrobiologia, 799(1):309-325.
Ter Braak C J F, Juggins S. 1993. Weighted averaging partial least squares regression (WA-PLS):An improved method for reconstructing environmental variables from species assemblages. Hydrobiologia, 269-270(1):485-502.
Ter Braak C J F, Prentice I C. 1988. A theory of gradient analysis. Advances in Ecological Research, 18:221-317.
Ter Braak C J F, Šmilauer P. 1998. Canoco Reference Manual and User's Guide to Canoco for Windows:Software for Canonical Community Ordination (Version 4). Centre for Biometry Wageningen, Wageningen, the Netherlands. 351p.
Ter Braak C J F, Verdonschot P F M. 1995. Canonical correspondence analysis and related multivariate methods in aquatic ecology. Aquatic Sciences, 57(3):255-289.
Ter Braak C J F. 1986. Canonical correspondence analysis:a new eigenvector technique for multivariate direct gradient analysis. Ecology, 67(5):1 167-1 179.
Ter Braak C J F. 1987. The analysis of vegetation-environment relationships by canonical correspondence analysis. Vegetatio, 69(1-3):69-77.
Ter Braak C J F. 1988. Canoco-A Fortran Program for Canonical Community Ordination by Partial Detrended Canonical Correspondence Analysis, Principal Components Analysis and Redundancy Analysis (Version 2.1). TNO Institute of Applied Computer Science, Wageningen. 95p.
Wang S M, Dou H S. 1998. China Lakes Chronicle. Science Press, Beijing, China. 580p. (in Chinese)
Wei D, Yan H, Shan S X, Yan B X. 2001. Hydrochemical characteristics of salt marsh wetlands in western Songnen Plain. Journal of Geographical Sciences, 11(2):217-223.
Wetzel R G. 2001. Limnology:Lake and River Ecosystems. 3rd edn. Academic Press, San Diego, USA. 1006p.
Winter J G, Duthie H C. 2000. Epilithic diatoms as indicators of stream total N and total P concentration. Journal of the North American Benthological Society, 19(1):32-49.
Witak M, Hernández-Almeida I, Grosjean M, Tylmann W. 2017. Diatom-based reconstruction of trophic status changes recorded in varved sediments of Lake Zabinskie(northeastern Poland), AD 1888-2010. Oceanological and Hydrobiological Studies, 46(1):1-17.
Wu J C, Zhang J F. 2009. Water Environmental Chemistry. China Water Resources and Hydropower Press, Beijing, China. 259p. (in Chinese)
Wunsam S, Schmidt R. 1995. A diatom-phosphorus transfer function for alpine and pre-alpine lakes. Memorie dell Istituto Italiano di Idrobiologia, 53:85-99.
Xiao H F, Xue B, Yao S C et al. 2011. Water quality of lakes evolution in Songnen Plain. Wetland Science, 9(2):120-124. (in Chinese with English abstract)
Xu B. 2018. Establishment of Diatom-Salinity Transfer Function and Reconstruction of Paleo-salinity in the Minjiang Estuary and its Adjacent Sea Area. Anhui University of Science & Technology, Huainan, China. 84p. (in Chinese with English abstract)
Yang X D, Wang S M, Xia W L, Li W C. 2001. Application of CCA for study on modern lake diatoms and environment in the Tibetan Plateau. Science in China Series D:Earth Sciences, 44(S1):343-350.
Yang X D. 2004. Diatom Transfer Functions and Quantitative Reconstructions of Environment:Case Studies of Lakes in Qinghai-Xizang (Tibetan) Plateau and the Middle and Lower Reaches of Yangtze River. Chinese Academy of Sciences, China. p.1-87. (in Chinese with English abstract)
Yao S C, Xue B, Lv X G, Xiao H F. 2010. The hydrochemical characteristic of lakes in Songnen Plain. Wetland Science, 8(2):169-175. (in Chinese with English abstract)
Zhang Z S, Huang X F. 1991. Research Methods of Freshwater Plankton. Science Press, Beijing, China. 414p. (in Chinese)
Zhou H T, Na X D, Zang S Y. 2016. Dynamic change of redcrowned crane habitat suitability in the west Songnen Plain during the past 30 years. Chinese Journal of Ecology, 35(4):1 009-1 018. (in Chinese with English abstract)
Zhuang C C, Zhan Q, Wang Z H. 2014. An attempt on construction of diatom-based sea-level transfer functions in modern tidal flat at Yangtze River estuary. Journal of Palaeogeography, 16(4):557-568. (in Chinese with English abstract)
Copyright © Haiyang Xuebao