Cite this paper:
QIN Huan, GUO Qingqing, LIU Chenchen, LI Fenglan, ZHANG Hua, CHU Zihan, WANG Jiangxin, LEI Anping. Occurrence and light response of residual plastid genes in a Euglena gracilis bleached mutant strain OflB2[J]. Journal of Oceanology and Limnology, 2020, 38(6): 1858-1866

Occurrence and light response of residual plastid genes in a Euglena gracilis bleached mutant strain OflB2

QIN Huan1, GUO Qingqing1, LIU Chenchen1, LI Fenglan1, ZHANG Hua1, CHU Zihan2, WANG Jiangxin1, LEI Anping1
1 Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518000, China;
2 Basis International School SZ, Shenzhen 518000, China
Abstract:
Euglena gracilis is a unicellular green eukaryotic microalga that features characteristics of both plants and animals. The photosynthetic function of its chloroplast is easily lost under stress resulting in bleached mutants, while the physiological role of their residual plastid DNAs remains unclear. In this study, we obtained five bleached mutants by ofloxacin (Ofl) treatment, identified 12 residual plastid genes in five bleached mutants, and determined the mRNA levels in the wild type E. gracilis (WT) and one bleached mutant (OflB2) under dark and light stimulation conditions by quantitative reverse transcribed PCR (qRTPCR). Results show that the expression of all selected plastid genes in both WT and OflB2 mutant did not change significantly in darkness, while their responses to light stimulation were different. Under the light stimulation conditions, half of the genes did not change significantly, while most of the other genes were down-regulated in OflB2 mutant and up-regulated in WT. Therefore, the bleached mutant retains part of the plastid genome and the plastid relic is responsive to light. Our research will help to understand the functions of residual plastid DNA and evolution of chloroplasts.
Key words:    Euglena gracilis|bleached mutant|residual plastid genes|light response   
Received: 2019-06-18   Revised: 2019-09-23
Tools
PDF (919 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by QIN Huan
Articles by GUO Qingqing
Articles by LIU Chenchen
Articles by LI Fenglan
Articles by ZHANG Hua
Articles by CHU Zihan
Articles by WANG Jiangxin
Articles by LEI Anping
References:
Ahmadinejad N, Dagan T, Martin W. 2007. Genome history in the symbiotic hybrid Euglena gracilis. Gene., 402(1-2):35-39.
Bennett M S, Triemer R E. 2015. Chloroplast genome evolution in the Euglenaceae. J. Eukaryot. Microbiol., 62(6):773-785.
Bodyl A. 1996. Is the origin of Astasia longa an example of the inheritance of acquired characteristics? Acta Protozool., 35(2):87-94.
Buetow D E. 1982. The Biology of Euglena, Vol. III. Academic Press, New York. p.157-195.
Ebenezer T E, Carrington M, Lebert M, Kelly S, Field M C. 2017. Euglena gracilis genome and transcriptome:organelles, nuclear genome assembly strategies and initial features. In:Schwartzbach S D, Shigeoka S eds. Euglena:Biochemistry, Cell and Molecular Biology. Springer, Cham. p.125-140.
Eberhard S, Drapier D, Wollman F A. 2002. Searching limiting steps in the expression of chloroplast-encoded proteins:relations between gene copy number, transcription, transcript abundance and translation rate in the chloroplast of Chlamydomonas reinhardtii. Plant J., 31(2):149-160.
Gockel G, Hachtel W, Baier S, Fliss C, Henke M. 1994. Genes for components of the chloroplast translational apparatus are conserved in the reduced 73-kb plastid DNA of the nonphotosynthetic euglenoid flagellate Astasia longa. Curr. Genet, 26(3):256-262.
Gockel G, Hachtel W, Michael M. 2000. Complete gene map of the plastid genome of the nonphotosynthetic euglenoid flagellate Astasia longa. Protist, 151(4):347-351.
Hadariová L, Vesteg M, Birčák E, Schwartzbach S D, Krajčovič J. 2017. An intact plastid genome is essential for the survival of colorless Euglena longa but not Euglena gracilis. Curr. Genet, 63(2):331-341.
Hallick R B, Hong L, Drager R G, Favreau M R, Monfort A, Orsat B, Spielmann A, Stutz E. 1993. Complete sequence of Euglena gracilis chloroplast DNA. Nucleic Acids Res., 21(15):3 537-3 544.
Heizmann P, Doly J, Hussein Y, Nicolas P, Nigon V, Bernardi G. 1981. The chloroplast genome of bleached mutants of Euglena gracilis. Biochim. Biophys. Acta, 653(3):412-415.
Heizmann P, Ravel-Chapuis P, Nigon V. 1982. Minicircular DNA having sequence homologies with chloroplast DNA in a bleached mutant of Euglena gracilis. Curr. Genet, 6(2):119-122.
Heizmann P, Salvador G F, Nigon V. 1976. Occurrence of plastidial rRNAs and plastidial structures in bleached mutants of Euglena gracilis. Exp. Cell Res., 99(2):253-260.
Hussein Y, Heizmann P, Nicolas P, Nigon V. 1982. Quantitative estimations of chloroplast DNA in bleached mutants of Euglena gracilis. Curr. Genet, 6(2):111-117.
Idoine A D, Boulouis A, Rupprecht J, Bock R. 2014. The diurnal logic of the expression of the chloroplast genome in Chlamydomonas reinhardtii. PLoS One, 9(10):e108760.
Kivic P A, Vesk M. 1972. Structure and function in the euglenoid eyespot apparatus:the fine structure, and response to environmental changes. Planta, 105(1):1-14.
Kivic P A, Vesk M. 1974. An electron microscope search for plastids in bleached Euglena gracilis and in Astasia longa. Can. J. Bot., 52(4):695-699.
Krajčovič J, Ebringer L, Polónyi J. 1989. Quinolones and coumarins eliminate chloroplasts from Euglena gracilis. Antimicrob. Agents Chemother., 33(11):1 883-1 889.
Krinsky N I, Goldsmith T H. 1960. The carotenoids of the flagellated alga, Euglena gracilis. Arch. Biochem. Biophys., 91(2):271-279.
Križková L, Nagy M, Polónyi J, Ebringer L. 1998. The effect of flavonoids on ofloxacin-induced mutagenicity in Euglena gracilis. Mutat. Res., 416(1-2):85-92.
Krnáčová K, Rýdlová I, Vinarčíková M, Krajčovič J, Vesteg M, Horváth A. 2015. Characterization of oxidative phosphorylation enzymes in Euglena gracilis and its white mutant strain W gmZOflL. FEBS Lett., 589(6):687-694.
Oldenburg D J, Bendich A J. 2016. The linear plastid chromosomes of maize:terminal sequences, structures, and implications for DNA replication. Curr. Genet, 62(2):431-442.
Qin H W, Chen L F, Lu N, Zhao Y H, Yuan X. 2012. Toxic effects of enrofloxacin on Scenedesmus obliquus. Front. Environ. Sci. Eng., 6(1):107-116.
Schwartzbach S D, Schiff J A. 1974. Chloroplast and cytoplasmic ribosomes of Euglena:selective binding of dihydrostreptomycin to chloroplast ribosomes. J. Bacteriol., 120(1):334-341.
Siemeister G, Hachtel W. 1989. A circular 73 kb DNA from the colourless flagellate Astasia longa that resembles the chloroplast DNA of Euglena:restriction and gene map. Curr. Genet, 15(6):435-441.
Sulli C, Fang Z W, Muchhal U, Schwartzbach S D. 1999. Topology of Euglena chloroplast protein precursors within endoplasmic reticulum to Golgi to chloroplast transport vesicles. J. Biol. Chem., 274(1):457-463.
Thomas E J, Ortiz W. 1995. Loss of chloroplast transcripts for proteins associated with photosystem II:an early event during heat-bleaching in Euglena gracilis. Plant Mol. Biol., 27(2):317-325.
Tucci S, Vacula R, Krajčovič J, Proksch P, Martin W. 2010. Variability of wax ester fermentation in natural and bleached Euglena gracilis strains in response to oxygen and the elongase inhibitor flufenacet. J. Eukaryot. Microbiol., 57(1):63-69.
Vacula R, Steiner J M, Krajčovič J, Ebringer L, Löffelhardt W. 2001. Plastid state-and light-dependent regulation of the expression of nucleus-encoded genes for chloroplast proteins in the flagellate Euglena gracilis. Folia Microbiol., 46(5):433-441.
Vesteg M, Vacula R, Burey S, Löffelhardt W, Drahovská H, Martin W, Krajčovič J. 2009. Expression of nucleusencoded genes for chloroplast proteins in the flagellate Euglena gracilis. J. Eukaryot. Microbiol., 56(2):159-166.
Wang J X, Shi Z X, Xu X D. 2002. Chloroplast-less mutants of two species of Euglena. Acta Hydrobiol. Sin., 26(2):175-179.
Wang J X, Shi Z X, Xu X D. 2004. Residual plastids of bleached mutants of Euglena gracilis and their effects on the expression of nucleus-encoded genes. Prog. Nat. Sci., 14(3):213-217.
Yoshida Y, Tomiyama T, Maruta T, Tomita M, Ishikawa T, Arakawa K. 2016. De novo assembly and comparative transcriptome analysis of Euglena gracilis in response to anaerobic conditions. BMC Genomics, 17:182.
Zakryś B, Milanowski R, Karnkowska A. 2017. Evolutionary origin of Euglena. In:Schwartzbach S D, Shigeoka S eds. Euglena:Biochemistry, Cell and Molecular Biology. Springer, Cham. p.3-17.
Copyright © Haiyang Xuebao