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  Abstract      Antibiotics released into the environment through anthropogenic activities exert selective 
pressure, driving bacteria towards increasing antimicrobial resistance. The prevalence of antibiotics and 
the ecological risks posed in the riverine estuarine of Larut River and Sangga Besar River, which included 
wastewater effl  uents from hospital, zoo, and poultry slaughterhouse sources were investigated. Solid phase 
extraction (SPE) followed by high-performance liquid chromatography tandem mass chromatography 
(HPLC-MS/MS) were used to extract and quantify the antibiotic residues from 22 antibiotics belonging 
to six major antibiotic classes (sulfonamide, macrolide, fl uoroquinolone, phenicol, trimethoprim, and 
tetracycline). Sixteen antibiotic residues were detected with concentrations ranging from limit of detection 
(LOD) to 1 262.3 ng/L. Fluoroquinolones and macrolides were the most frequently detected compounds. 
Erythromycin, clarithromycin, and ofl oxacin detected in hospital and zoo effl  uents posed a high risk to 
algae while tetracycline had low to medium ecological risks toward all the relevant organisms from aquatic 
environments (algae, invertebrate  Daphnia   magna , and fi sh). 

  Keyword : antibiotic residues; prevalence; ecological risk; anthropogenic pollution; riverine; estuarine 

 1 INTRODUCTION 

 Antibiotic residues as an emerging contaminant 
generated several environmental risk implications in 
recent years due to its increased consumption rate in 
human and animal sectors (Cabello, 2006; Zhang et 
al., 2012; van Boeckel et al., 2014). Deaths related to 
antimicrobial resistance (AMR) is currently estimated 
at 700 000 annually but could rise to approximately 
10 million annually and potentially cost US$ 100 
trillion in lost economic output by the year 2050 
(O’Neill, 2016). According to the National 
Surveillance on Antibiotic Utilization (NSAU) 
program of Malaysia, the mean defi ned daily doses’ 
(DDD) per 1 000 patient days for antibiotic utilization 
in hospital wards showed an overall upward trend 
(Ministry of Health Malaysia, 2017b).  

 The concern arising from this emerging contaminant 

lies in the considerable amount of antibiotics and its 
partially metabolized products being expelled through 
pharmaceutical, healthcare, agriculture, aquaculture 
and poultry industries (Iglesias et al., 2013; Lundborg 
and Tamhankar, 2017). Constant input paired with 
multiple contamination sources had led to pseudo-
persistent antibiotics in an environment (Houtman et 
al., 2004). The primary risk arising from misuse and 
overuse of antibiotics is its ability to culminate the 
development of AMR in both pathogenic and non-
pathogenic bacteria (Cabello et al., 2016; Zarfel et al., 
2017; Pérez Gaudio et al., 2018; Divya and Hatha, 
2019) while the secondary risk involves altering the 
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structure of natural bacterial communities involved in 
key ecosystem functions (Allen et al., 2010; Grenni et 
al., 2018). 

 The aquatic environment is vulnerable to pollution 
from diff erent anthropogenic activities. The presence 
of antibiotics in the environment may occur through 
several channels, e.g. untreated municipal wastewater 
(Xu et al., 2009), wastewater treatment plant effl  uents 
(Miao et al., 2004), animal waste discharge (Marni et 
al., 2010), and agricultural runoff s (Davis et al., 
2006). Once in an aquatic environment, antibiotics 
and/or their metabolized products will persist in vast 
quantities within environmental compartments (Yao 
et al., 2017). This is a cause for concern because under 
antibiotic selective pressure, the aquatic environments 
could promote antibiotic resistance gene acquisition 
and dissemination among environmental bacterial 
communities and pathogenic bacteria either via 
horizontal gene transfer or lateral gene transfer, also 
known as chromosomal mutations (Martinez, 2009; 
Garcillán-Barcia et al., 2011; Partridge, 2011; 
Berendonk et al., 2015). Several studies have 
demonstrated the direct antibiotic resistance gene 
exchange between environmental bacteria and 
clinically signifi cant bacteria (Humeniuk et al., 2002; 
Poirel et al., 2005; Baquero et al., 2008).  

 Past studies generally focused on antibiotic 
occurrences or specifi c antibiotic concentrations in 
Malaysian freshwater surface waters (Sakai et al., 
2016; Al-Qaim et al., 2018; Praveena et al., 2018). 
Studies on the levels of antibiotic residues in river 
water and their ecological risks remain scarce. As 
such, this study aims to determine the levels of 
antibiotic residues and their ecological risks in the 
riverine estuarine water continuum of Larut and 
Sangga Besar River that received wastewater effl  uents 
from zoo, hospital, and poultry slaughterhouse. Both 
rivers belong in part to two distinct major river basin 
systems located within the Larut, Matang and Selama 
District in Perak, Malaysia. The climate of the area 
was characterized by uniform temperature of average 
32 °C, high humidity (80%–90%), and high average 
annual rainfall (4 000 mm/year) (Samuding et al., 
2009). A total of twenty-two antibiotics comprising of 
six antibiotic groups (Sulfonamides, fl uoroquinolones, 
macrolides, tetracyclines, amphenicols, and 
diaminopyrimidine) were screened using high-
performance liquid chromatography-tandem mass 
spectrometry (HPLC-MS/MS). An environmental risk 
assessment was performed on detected antibiotic 
residues to evaluate the risks involved.  

 2 MATERIAL AND METHOD 

 2.1 Standard and chemical 

 All 22 target antibiotics were obtained from Sigma-
Aldrich (Saint Louis, Missouri, USA). The list 
consists of six major antibiotic classes: macrolides 
(roxithromycin, RTM; clarithromycin, CTM; 
azithromycin, AZM; erythromycin-H 2 O, ETM-H 2 O), 
fl uoroquinolones (enoxacin, ENX; enrofl oxacin, 
ENRO; norfl oxacin, NOX; ofl oxacin, OFX; 
ciprofl oxacin, CIX), tetracyclines (chlortetracycline, 
CTC; oxytetracycline, OTC; tetracycline, TC), 
amphenicols (fl orfenicol, FF; chloramphenicol, 
CAP), diaminopyrimidine (trimethoprim, TMP), 
sulfonamides (sulfacetamide, SAAM; sulfathiazole, 
STZ; sulfadimethoxine, SDM; sulfadimidine, SMA; 
sulfapyridine, SPD; sulfadiazine, SDZ; 
sulfamethoxazole, SMX). The surrogate standard, 
 13 C 3 -caff eine solution (1 mg/mL with methanol), from 
Sigma-Aldrich was dissolved in methanol before cold 
storage at -20 °C.  

 All solvents used in this work were in HPLC grade. 
Erythromycin-H 2 O standard stock was prepared by 
acidifying erythromycin with 3 mol/L H 2 SO 4  in 
accordance to McArdell et al. (2003). As such, 
erythromycin in its dehydration product was detected, 
ETM-H 2 O, due to it being readily dehydrated by the 
loss of one water molecule (Göbel et al., 2005). 
Methanol, acetonitrile, and Ethylenediamine 
tetraacetic acid disodium (Na 2 EDTA) were obtained 
from Merck (Darmstadt, Germany). Formic acid was 
obtained from CNW (Germany). Water was deionized 
using the Milli-Q water purifi cation system (Millipore, 
Bedford, Massachusetts, USA).  

 2.2 Sampling 

 Water samples were taken from six sites located 
downstream and upstream of Larut River, and three 
sites from Sangga Besar River. Larut River receives 
wastewater effl  uents from hospital, zoo, and poultry 
slaughterhouse whereas Sangga Besar River is less 
polluted. (Fig.1). The rivers each belongs in part to 
their respective independent major river basin systems, 
moving westward into the Strait of Malacca (Ahmad 
and Hasan, 2011). The settlements along Larut River 
had a population size of 334 073 (Department of 
Statistics Malaysia, 2011) and is approximately 
20.9 km long, discharging exclusively from Larut Hill 
(elevation: 1 250 m) (S1a), moving through the town 
area while carrying point-source discharges from zoo, 
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hospital, and slaughterhouse before passing through 
downstream Larut (S1b) and fi nally reaching Larut 
Estuary (S1c). For Sangga Besar River, its length runs 
a shorter distance of approximately 9.9 km from the 
fi shing village of Kuala Sepetang (S2a), passing 
through a small-scale cage aquaculture (S2b), before 
reaching the river mouth of Sepetang Estuary (S2c). 
The settlements along Sangga Besar River had a 
smaller population size of about 31 800 (Forestry 
Department of Perak, 2010) due to it being nestled 
within the 40 466 hm 2  protected Matang Mangrove 
Forest Reserve (MMFR). Apart from serving as a 
waterway for fi shing boats and as a cage aquaculture 
site (Annual Fisheries of Perak, 2000), other 
anthropogenic activities were kept minimal by the 
exemplary forestry management system that was put 
in place (Muda et al., 2005). Duplicate water samples 
were collected about 0.3 m below the water surface 
using autoclaved amber glass bottles (2.0 L) from the 
nine sampling sites between April and May 2015. The 
wastewater effl  uents were collected from the main 
outlet that fl ows into the river. The samples were then 
cooled in iceboxes before being transported to the 
laboratory for further analysis. 

 2.3 Physicochemical and inorganic nutrient parameters 

 A concurrent study measured the in situ physical 
parameters (temperature, salinity, pH, and dissolved 
oxygen) and dissolved inorganic nutrients [ammonium 
(NH 4 ), nitrite (NO 2 ), nitrate (NO3), and phosphate 
(PO 4 )] concentrations have been carried out and the 
results are already published in (Lye et al., 2019). 

 2.4 Detection and quantifi cation of antibiotic residues 

 For antibiotic detection and quantifi cation, two 
liters of water samples from each sampling site were 
fi ltered using precombusted 0.7-μm glass-fi ber fi lters 
(GF/F, Sartorius, Gӧttingen, Germany). Filtrates were 
adjusted to pH 3 using 3.0 mol/L sulphuric acid to 
avoid oxidation of antibiotics with the addition of 
0.2 g of Na 2 EDTA as a chelating agent before 100 ng 
of  13 C 3 -caff eine was used as a surrogate standard to 
monitor the recovery rate as described by Zhang et al. 
(2013). Briefl y, Oasis Hydrophilic-lipophilic balance 
(HLB) cartridges (500 mg, Waters, UK) were pre-
treated with 6 mL of deionized water, 6 mL of 
10 mmol/L acidifi ed Na 2 EDTA buff er and 6 mL of 
methanol. Target antibiotics were then concentrated 
by solid-phase extraction (SPE) by the Visiprep SPE 
system (Bellefonte, Pennsylvania, USA). The loading 
rate for each fi ltrate that passed through a cartridge 

was set at 10 min/mL. Cartridges loaded with fi ltrate 
were washed using 10 mL of acidifi ed deionized 
water before vacuum dried for 10 min. The analytes 
were then eluted three times using 2 mL of methanol, 
concentrated to a volume of about 20 μL using 
nitrogen gas and fi nally dissolved to a fi nal volume of 
1.0 mL with 90% aqueous methanol. 

 Analysis of the twenty-two extracted antibiotics 
was completed using Agilent 1200 series (Palo Alto, 
California, USA) connected to a Thermo Scientifi c 
Hypersil GOLD columns (2.1 mm×100 mm, 1.9 μm). 
Binary mobile phase was made by combining mobile 
phase A, which included 5 mmol/L ammonium 
acetate aqueous solution and 0.2% (v/v) formic acid, 
with mobile phase B that contained methanol. The 
following mobile phase gradient program was 
applied: 10% to 60% in 15 min, 60% to 95% within 
the following 5 min and held for 5 min, then returned 
to 10% in 1 min and held for 1 min. The fl ow rate 
maintained at 0.3 mL/min, column temperature was 
held at 40 °C and the injection volume of samples 
was at 5 μL. Parameters for MS/MS conditions were 
summarized in Supplementary Table S1. All the 
analyses were carried out in duplicates. 

 2.5 Quality analysis and quality control 

 The internal standard curve was applied to calculate 
the concentrations of the twenty-two antibiotics, i.e. 
concentration of the analytes were plotted against 
peak area ratio. For each compound, concentrations 
with a signal to noise (S/N) ratio of 10 were set to be 
the limits of quantifi cation (LQ). The range of LQs for 
the selected antibiotic was between 0.02–36.50 ng/L, 
while limits of detection (LOD) were between 0.01–
10.95 ng/L. The recoveries of  13 C 3 -caff eine was in the 
range of 0–176.7% in all the water samples. 
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 Fig.1 Surface water sampling sites of Larut, Matang and 
Selama District, Perak, Malaysia 
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 2.6 Risk assessment 

 Ecological risk quotients (RQs) was calculated 
based on the European technical guidance document 
on risk assessment (European Commission Joint 
Research Centre, 2003) for the evaluation of potential 
ecological eff ect for antibiotic presence in the 
environment. RQs were calculated by the equation: 

 RQ=MEC/PNEC, 
 where MEC was the “measured environmental 
concentration” and PNEC was the “predicted no-
eff ect concentration” for the respective antibiotics. 
PNEC is the division of lethal concentration or 
eff ective concentration for 50% of exposed population 
(EC50/LC50) against assessment factor (AF) based on 
toxicity data value on non-target aquatic organisms: 
algae, invertebrate  Daphnia   magna , and fi sh 
(Supplementary Table S2). RQs for all the above 
formulas were defi ned according to Xue et al. (2013): 
low risk (0.01<RQs<0.1), medium risk (0.1<RQs<1), 
and high risk (RQs>1). 

 2.7 Statistical analysis 

 Cluster analysis for sampling sites was performed 
based on the antibiotic residue concentrations using 
PAST Statistics version 3.22 (Hammer et al., 2001) 
through Bray-Curtis similarity index. Correlation and 
linear regression analyses were performed to measure 
the eff ect between water quality (Lye et al., 2019) and 
antibiotic concentrations. 

 3 RESULT 

 3.1 Antibiotics concentration in river waters and 
wastewater effl  uents  

 From the twenty-two antibiotics screened, sixteen 
types of antibiotic residues were positively detected 
among the sites except for aquaculture farm in Sangga 
Besar River (Table 1). The total antibiotic 
concentration ranged from LOD–1 262.30 ng/L with 
a mean concentration of 13.05 ng/L. The total 
antibiotic detection frequency was 88.89%, whereby 
ETM-H 2 O (77.78%) and CIX (55.56%) were the most 
prevalent antibiotics detected. The detection 
frequency of antibiotic residues in Larut River was 
higher in comparison to Sangga Besar with 
concentrations ranged from LOD–18.28 ng/L. 

 The upstream site (S1a) of Larut River generally 
had lower antibiotic detection frequency (9.09%) 
compared to other positively detected sampling sites. 
Of the antibiotics examined, only ENRO (0.93 ng/L) 

and SMX (0.21 ng/L) were detected. Among the 
wastewater effl  uents, hospital wastewater effl  uent was 
found to have the highest antibiotic detection frequency 
along with the highest total concentration of antibiotics 
(54.55%; 2 227.94 ng/L) followed by the wastewater 
effl  uent from the zoo (45.46%; 160.10 ng/L) and 
slaughterhouse (40.91%; 93.34 ng/L). Twelve 
antibiotics belonging to macrolides (CTM, AZM, 
ETM-H 2 O; 3.28–1 262.30 ng/L), fl uoroquinolones 
(NOX, OFX, CIX; LOD–577.97 ng/L), sulfonamides 
(SPD, SDZ, SMX; 6.64–91.36 ng/L), tetracycline (TC; 
66.93–1 092.49 ng/L), chloramphenicol (CAP; 3.01–
4.92 ng/L) and trimethoprim (TMP; 75.58–93.15 ng/L) 
had positive detections in hospital wastewater effl  uent. 
In contrast, antibiotics detected from zoo wastewater 
effl  uent was mainly from fl uoroquinolones class (4/5, 
ENX, ENRO, OFX, CIX) in the range of LOD–
34.30 ng/L followed by macrolides (AZM, ETM-H 2 O, 
0.60–22.15 ng/L), tetracyclines (OTC, 18.81–
108.88 ng/L), amphenicol (CAP, LOD–1.99 ng/L), 
trimethoprim (TMP, 5.39 ng/L) and sulfonamides 
(SMX, 0.37 ng/L). For slaughterhouse wastewater 
effl  uent, fl uoroquinolones (ENRO, NOX, CIX, 0.68–
25.61 ng/L) and sulfonamides (SPD, SDZ, SMX, 
0.55–12.59 ng/L) were the major class detected 
whereas for macrolides, tetracyclines and trimethoprim, 
only ETM-H 2 O (0.18–2.39 ng/L), OTC (26.7–
92.58 ng/L) and TMP (1.03 ng/L) were detected. For 
the downstream sites (S1b and S1c) fewer antibiotics 
were detected, ETM-H 2 O was detected for both sides 
with 6.42 ng/L and LOD–3.61 ng/L respectively. 
Sulfonamides were only detected in immediate 
downstream, S1b (2/7, SDZ, SMX) with the range of 
0.19–0.41 ng/L but not in S1c. The same trend was 
observed for CIX with the range of LOD–0.54 ng/L 
whereas NOX was only detected in S1c with 0.18 ng/L. 

 For Sangga Besar River sites, antibiotic residues 
were only detected for S2a and S2c with a total 
concentration of 5.14 ng/L and 23.16 ng/L, respectively. 
For ENRO, it was only detected at S2a with 1.30 ng/L. 
The detected antibiotics mainly come from 
fl uoroquinolones, OFX and CIX, which contributed to 
the range of 2.32–18.28 ng/L in S2c whereas the site at 
S2a the concentration was <LQ. Macrolides were 
detected in low concentrations in S2c except for RTM 
whereas for S2a only ETM-H 2 O was detected. 

 3.2 Ecological risk assessment for antibiotics (RQs)  

 For this work, PNEC of algae, invertebrate 
 Daphnia   magna , and fi sh were analyzed to assess the 
RQs. RQ for ENX was not calculated, as the 
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toxicology data were unavailable for these aquatic 
organisms. The degree of sensitivity of the aquatic 
organisms towards antibiotics in surface waters of 
Larut and Sangga Besar River was in the following 
descending order: Algae >  Daphnia   magna  > fi sh.  

 In Table 2, the risk assessment showed that among 
the macrolides detected, ETM-H 2 O posed low to high 
ecological risk to algae among the study sites except 
for S1a and S2b, conversely, low risk was detected for 
invertebrate, whereas AZM posed a low to medium 
risk to algae. CTM detected in hospital was found to 
have a high risk for algae, contrastingly, algae in S2c 
of Sangga River was exposed to low ecological risk. 
For fl uoroquinolones, OFX detected at zoo, hospital, 
and S2c posed a high ecological risk to algae whereas 
at S2c only medium risk was found. CIX detected in 
hospital had a low risk for algae. Among tetracyclines, 
OTC detected in hospital, slaughterhouse and S2a 
posed low to medium risk for algae whereas TC 
detected in hospital posed a medium risk for algae, 
medium risk for invertebrates and low risk for fi sh. 
Among the sulfonamides compounds tested, only 
SMX and SMA detected in hospital and slaughterhouse 
posed medium and low risk respectively to algae.  

 4 DISCUSSION 

 4.1 Occurrence of antibiotics in water 

 In this present study, our data showed that hospital, 
zoo, and slaughterhouse effl  uents from midstream of 
Larut River were important contributors to antibiotic 
contamination along Larut River, which was consistent 
with Lye et al. (2019). However, cluster analysis 
showed that, the antibiotic contamination in effl  uents 
from the zoo and the slaughterhouse were more similar 
(69.00%) than effl  uent from hospital (Table 1). The 
effl  uent from both zoo and slaughterhouse could have 
contained partially metabolized antibiotics from 
veterinary sources, in comparison to hospital effl  uent 
that was from human sources. The high prevalence of 
antibiotic residues in hospital concurred with other 
studies (Verlicchi et al., 2012; Ory et al., 2016). In the 
wastewater effl  uent of hospital, ETM-H 2 O was found 
to be the most prevalent antibiotic, as it was the second-
highest antibiotics prescribed (22.4%, Ministry of 
Health Malaysia, 2017) in Malaysia to treat susceptible 
bacterial infection and/or as a motility agent in critically 
ill patients (Siti et al., 2014; Shamsuddin et al., 2016). 
Furthermore, ETM has good stability in the aquatic 
environment (Li et al., 2018). Tan et al. (2017) revealed 
that ETM-ethylsuccinate was one of the antibiotics that 

were inappropriately prescribed in a Malaysia hospital 
for upper respiratory tract infections, as most of the 
prescribers were unaware of the removal of this drug 
from Malaysia’s National Antibiotic Guideline due to 
the resistance developed by Streptococci. Besides, 
ETM usage is legally permitted in Malaysia for poultry 
and cattle farming (Hassali et al., 2018), the total 
amount used in 2015 was 218 290 kg/year (Marzuki, 
2017). The detected concentrations in this study were 
comparable to the levels from Pearl River (not 
detected–1 540 ng/L, Li et al., 2018) but higher than 
Tamagawa River, Japan (21.0–120.0 ng/L, Managaki 
et al., 2007), Lake Taihu (not detected–624.80 ng/L, 

 Table 2 Calculated RQs for the 22 antibiotics in surface 
waters of 9 sampling sites in Larut River and Sangga 
Besar River towards algae, invertebrates, and fi sh 

 Antibiotic 
class 

 Compound 
abbr. 

 Site 

 H  Zoo  SH  S1b  S1c  S2c  S1a  S2a  S2b 

 I  RTM                   

   CTM                   

   AZM                   

   ETM-H 2 O  a*                 

 II  ENRO                   

   NOX                   

   OFX                   

   CIX                   

 III  CTC                   

   OTC                   

   TC  a** b*                 

 IV  FF                   

   CAP                   

 V  TMP                   

 VI  SAAM                   

   STZ                   

   SDM                   

   SMA                   

   SPD                   

   SDZ                   

   SMX                   

 Green: Algae RQ<0.01; blue: Algae Low Risk; pink: Algae Medium Risk; 
red: Algae High Risk; I: Macrolide; II: Fluoroquinolone; III: Tetracycline; 
IV: Amphenicol; V: Trimethoprim; VI: Sulfonamide; Roxithromycin: RTM; 
clarithromycin: CTM; azithromycin: AZM; erythromycin-H 2 O: ETM-
H 2 O; enoxacin: ENX; enrofl oxacin: ENRO; norfl oxacin: NOX; ofl oxacin: 
OFX; ciprofl oxacin: CIX; chlortetracycline: CTC; oxytetracycline: OTC; 
tetracycline: TC; fl orfenicol: FF; chloramphenicol: CAP; trimethoprim: 
TMP; sulfacetamide: SAAM; sulfathiazole: STZ; sulfadimethoxine: 
SDM; sulfadimidine: SMA; sulfapyridine: SPD; sulfadiazine: SDZ; 
sulfamethoxazole: SMX; Z: Zoo; H: hospital; SH: slaughterhouse. a*: 
invertebrate low risk; a**: invertebrate medium risk; b*: fi sh low risk. 
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Xu et al., 2014), and the South Yellow Sea (not 
detected–138.90 ng/L, Du et al., 2017), however, lower 
than wastewater treatment plants (WWTP) in Brazil 
(not detected–1 586.0 ng/L, Jank et al., 2014) and 
hospital effl  uents from Romania Hospital (not 
detected–7 520.00 ng/L, Szekeres et al., 2017) (Fig.2).  

 The use of fl uoroquinolones had increased 
substantially globally due to its broad-spectrum 
antimicrobial properties against Gram-negative 
pathogens, especially those resistant to other 
antimicrobial classes (Pham et al., 2019). Among the 
fl uoroquinolone compounds examined, second-
generation CIX and OFX were the most prevalent. 

CIX was the second highest expenditure in Malaysian 
public hospitals between 2009 and 2010 and are 
commonly used as systemic medication and to treat 
bacterial eye infection with utilization of 0.365 DDD/ 
1 000 inhabitants/day and 0.022 DDD/1 000 
inhabitants/day respectively, whereas the usage in 
livestock was 4 615 kg/year (Siti et al., 2014; Marzuki, 
2017). OFX is for systemic use and to treat outer ear 
infections; according to the Malaysian Statistic 
Medicines 2011–2014, the increasing trend was 
observed for the usage of anti-infective OFX ear drop 
from 0.015 DDD/1 000 inhabitants/day in 2011 to 
0.018 DDD/1 000 inhabitants/day in 2014 (Ministry 
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of Health Malaysia, 2017a). Generally, NOX is less 
potent than CIX, therefore, their usage rate as systemic 
medication (0.024 DDD/1 000 inhabitants/day) and 
bacterial eye infection treatment (0.001 DDD/1 000 
inhabitants/day) was much lower. For ENRO, it was 
positively detected in S1a, zoo, slaughterhouse, and 
S1a whereas ENX was only detected in the zoo. As 
the usage of these two antibiotics were legally 
permitted in animal feed for preventive measures in 
Malaysia (Marzuki, 2017). Overall, the 
fl uoroquinolone concentrations detected in this work 
were below the global mean (Fig.2). However, CIX 
showed an increasing systemic utilization and was the 
drug with the second highest expenditure in Malaysian 
public hospitals between 2009 and 2010 (Siti et al., 
2014). CIX levels in this study (not detected– 
577.97 ng/L) were higher if not similar to rivers and 
basins from Lui, Gombak, and Selangor rivers, 
Malaysia (52.50–299.88 ng/L, Praveena et al., 2018), 
Dongjiang River, China (not detected–442.10 ng/L, 
Chen et al., 2018), Chongqing, China (not 
detected–458.00 ng/L, Chang et al., 2010), and 
WWTP near a hospital in Lake Victoria Basin, Kenya 
(not detected–420.00 ng/L, Kimosop et al., 2016), but 
were several orders lower compared to WWTPs from 
Ter River, Spain (4.7–13 779.70 ng/L, Rodriguez-
Mozaz et al., 2015), New York, USA (not 
detected–5 600.00 ng/L, Batt et al., 2006), and STPs 
from Okhla, India (2 900.00–45 400.00 ng/L, Mutiyar 
and Mittal, 2014), hospitals from Ujjain, India (not 
detected–236 600 ng/L, Diwan et al., 2010) (Fig.2). 

 In this work, TC and OTC were the tetracycline 
residues detected in the wastewater effl  uents of 
hospital, zoo, and slaughterhouse in Larut River. 
Tetracyclines were one of the considerably cheaper 
classes of antibiotics available, making it attractive to 
be used for human and veterinary drugs in developing 
countries like Malaysia (Michalova et al., 2004; 
Roberts et al., 2012; Siti et al., 2014). The 
concentrations of tetracyclines detected in this work 
(LOD–1 092.49 ng/L) were higher than the global 
mean concentrations for surface waters (1.01–
254 820 ng/L, Fig.2), rivers in Huangpu River, China 
(not detected–135.50 ng/L, Jiang et al., 2011) and 
Cache La Poudre River, USA (not detected–1 210.00 
ng/L, Kim and Carlson, 2006), lakes in Taihu Lake, 
China (not detected–142.50 ng/L, Xu et al., 2014), 
and Choptank Basin, USA (not detected–388.00 ng/L, 
Arikan et al., 2008) but lower than hospital effl  uents 
from Xinxiang, China (1 147.83–1 727.05 ng/L, Wang 
et al., 2018) and Romania (not detected–1 340.00 ng/L, 

Szekeres et al., 2017) (Fig.2).  
 In Malaysia, TMP was used in combination with 

sulfonamides such as SMX and SDZ due to their 
synergistic antibacterial properties (Siti et al., 2014; 
Ministry of Health Malaysia, 2017a). As such, TMP 
was detected in locations shared by sulfonamides 
including hospital, zoo, and slaughterhouse. For 
sulfonamides, SMX was the most abundant and 
frequently detected residue type in this work, which is 
in agreement with Lye et al. (2019). Sulfonamides 
were reported as ubiquitous in tropical Asian countries 
(Shimizu et al., 2013), yet the concentrations in this 
study were below the mean antibiotic concentration 
in surface waters in the Asia region. Sulfonamides in 
this study (not detected–93.15 ng/L) had low levels 
comparable to Choptank watershed (not detected– 
9.00 ng/L, Arikan et al., 2008) and the Bohai Sea (not 
detected–96.00 ng/L, Zhang et al., 2013). Specifi cally, 
SMX in this study had levels similar to Taihu Lake (not 
detected–114.70 ng/L, Xu et al., 2014).  

 In this study, CAP was the only amphenicol 
compound detected in hospital and zoo. CAP was 
used as a systemic medicine and a topical ear drop to 
treat ear infections in Malaysia (Mohamad et al., 
2014) while commonly used in veterinary for horses 
(McElligott et al., 2017). Malaysia had banned the 
usage of CAP for food use in food-producing animals 
since 1998 (Malaysia Food Act 1983 (Act 281) and 
Regulations) (Ministry of Health Malaysia, 2014). 
The concentration levels of CAP (LOD–4.92 ng/L) in 
the current work was lower than Huangpu River, 
China (4.18–2.36 ng/L, Jiang et al., 2011), Taff  and 
Ely River, South Wales (not detected–40.00 ng/L, 
Kasprzyk-Hordern et al., 2008), Owo River, Nigeria 
(not detected–360.00 ng/L, Olarinmoye et al., 2016), 
WWTP in Lake Victoria Basin, Nigeria (not 
detected–60.00 ng/L, Kimosop et al., 2016), South 
Yellow Sea (not detected–73.20 ng/L., Du et al., 
2017) and hospitals in Lake Victoria Basin, Nigeria 
(70.00–80.00 ng/L, Kimosop et al., 2016) (Fig.2).  

 In comparison to the number and range of 
antibiotics detected from Larut River, sites from 
Sangga Besar River generally had low antibiotic 
detections and concentrations. This could be attributed 
to the lower population density of Sangga Besar 
compared to Larut River, which population was ten 
times larger (Ghaderpour et al., 2015), as studies had 
shown signifi cant correlations between population 
density and antibiotic compounds in the surface 
waters of river (Osorio et al., 2016). Thus, Sangga 
Besar received less anthropogenic pollution. Besides 
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that, antibiotic practices and doses applied in both 
humans and animals varied between regions and 
countries, which may greatly infl uence the type, 
distribution and variation of antibiotic residues in the 
aquatic environments (Managaki et al., 2007; Shimizu 
et al., 2013). We did not fi nd any correlation between 
antibiotic concentrations and water parameters 
measured (data from Lye et al., 2019), even though 
some studies have shown that physicochemical 
properties of the antibiotics are aff ected by the local 
environment parameters (e.g. temperature, pH, 
salinity, moisture, oxygen level, etc.) (Luo et al., 
2011; Lu et al., 2015; Yang et al., 2015). 
Hydrodynamics and microbiological degradation by 
bacteria will also aff ect the degradation and persistence 
of antibiotic in the environment (Gauthier et al., 2010; 
García-Galán et al., 2011; Tappe et al., 2013; Topp et 
al., 2013). 

 4.2 Risks posed by antibiotic residues in riverine 
estuarine environment 

 Calculated RQs revealed that individual antibiotic 
residue could be a risk to aquatic organisms. 
Individually, the antibiotics, ETM-H 2 O, CTM, and 
OFX posed high risks to algae ecology in several sites 
from the current study where hospital and zoo had 
been identifi ed as a risk site. Although algae’s 
sensitivity towards antibiotics in the aquatic 
environment had been verifi ed by numerous studies 
(Halling-Sørensen, 2000; Ando et al., 2007; 
Magdaleno et al., 2015; Li et al., 2018), the ecological 
risks posed in this study is still important as it aff ects 
78% of the studied sites. Apart from ETM-H 2 O, TC, 
CTM, and OFX, environmental toxicology data for 
antibiotics and the results compiled in this study 
indicates that most concentration of each of these 
antibiotics in river waters were not high enough to 
cause acute eff ects on more complex aquatic 
organisms. This study showed similar high risks for 
OFX present in sites from Laizhou Bay, China (Zhang 
et al., 2012), Korean aquatic environment (Lee et al., 
2008), and Hong Kong sewage (Deng et al., 2016).  

 Furthermore, the assessment indicates that ETM-
H 2 O, CTM, and OFX from hospital effl  uent could be 
at risk of promoting antibiotic resistance selection 
(Kemper, 2008) in the environment. Antibiotic 
resistance selection is based on the assumptions from 
Bengtsson-Palme and Larsson (2016) that selective 
concentrations need to be lower than those completely 
inhibiting growth. Given time and exposure, 
antibiotics in the environment could increase the 

prevalence of resistance by selecting resistant 
phenotypes via inhibition of sensitive strains 
(Ågerstrand et al., 2015). Thus, usage of the above 
antibiotics should be minimized and monitored to 
curb the development of antibiotic resistance. 

 5 CONCLUSION 

 Sixteen antibiotics residues with concentrations 
ranging from LOD to 1 262.3 ng/L were detected in 
Larut River and Sangga Besar River. The results 
showed a wide prevalence of antibiotics in the 
sampling area where fl uoroquinolones and macrolides 
were frequently detected in the water samples. RQs 
showed that ETM-H 2 O, CTM, and OFX detected 
from hospital and zoo posed the high risk to algae, 
while TC had low to medium ecological risk towards 
all tested aquatic organisms: algae, invertebrate 
 Daphnia   magna , and fi sh. Therefore, the wastewater 
effl  uents from hospital, zoo, and slaughterhouse 
introduced into the Larut River should be closely 
monitored. 

 6 DATA AVAILABILITY STATEMENT  

 The raw data produced and/or analyzed in the 
current study are not publicly available, because they 
will be used by the fi rst author for Master’s degree 
thesis preparation and so requires secure protection 
before thesis submission and graduation. However, 
data will be provided by the corresponding author 
upon request given valid reasons. 
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