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  Abstract         The resolution of ocean reanalysis datasets is generally low because of the limited resolution 
of their associated numerical models. Low-resolution ocean reanalysis datasets are therefore usually 
interpolated to provide an initial or boundary fi eld for higher-resolution regional ocean models. However, 
traditional interpolation methods (nearest neighbor interpolation, bilinear interpolation, and bicubic 
interpolation) lack physical constraints and can generate signifi cant errors at land-sea boundaries and around 
islands. In this paper, a machine learning method is used to design an interpolation algorithm based on 
Gaussian process regression. The method uses a multiscale kernel function to process two-dimensional 
space meteorological ocean processes and introduces multiscale physical feature information (sea surface 
wind stress, sea surface heat fl ux, and ocean current velocity). This greatly improves the spatial resolution 
of ocean features and the interpolation accuracy. The eff ectiveness of the algorithm was validated through 
interpolation experiments relating to sea surface temperature (SST). The root mean square error (RMSE) 
of the interpolation algorithm was 38.9%, 43.7%, and 62.4% lower than that of bilinear interpolation, 
bicubic interpolation, and nearest neighbor interpolation, respectively. The interpolation accuracy was also 
signifi cantly better in off shore area and around islands. The algorithm has an acceptable runtime cost and 
good temporal and spatial generalizability. 

  Keyword : Gaussian process regression; sea surface temperature (SST); machine learning; kernel function; 
spatial interpolation 

 1 INTRODUCTION 

 Ocean reanalysis datasets can improve the accuracy 
of ocean studies by assimilating observational data, 
so they are widely used in studies of ocean thermal 
and dynamic processes and their spatiotemporal 
variability (Du and Qu, 2010; Kumar and Hu, 2012; 
Balmaseda et al., 2013). They can also provide initial 
conditions and side boundary conditions for model 
simulation and prediction. Research regarding the 
development of high-resolution ocean reanalysis 
datasets and associated applications is therefore very 
important. However, increasing the resolution of 
numerical models to improve ocean reanalysis 
datasets involves using huge quantities of 
computational resources, especially for global 
datasets. Low-resolution ocean reanalysis datasets are 

usually interpolated into higher-resolution regional 
ocean models using nearest neighbor interpolation, 
linear interpolation or bicubic interpolation (Nardelli 
et al., 2016). This has the advantage of a lower 
calculation cost and can be completed relatively 
quickly. Other common interpolation methods for 
data assimilation, such as optimal interpolation and 
the successive corrections method are also often used 
to interpolate ocean reanalysis datasets, but these 
methods require background fi eld information (Wang 
et al., 2008, 2012). However, although traditional 
interpolation methods can improve the resolution of 
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ocean reanalysis datasets, they cannot introduce 
multiscale physical feature information. This is 
because they do not take into account spatio-temporal 
changes and non-linear processes. They only use 
some calculation of adjacent values to interpolate. As 
a result, the products obtained through interpolation 
often contain errors (Li and Heap, 2008), especially 
with regard to coastal waters and the areas around 
islands (Sokolov and Rintoul, 1999). 

 In recent years, machine learning methods have 
been increasingly applied to the interpolation of 
geographic data. Li et al. (2011) used 23 methods, 
including random forest and support vector machines, 
to interpolate mud content samples from the 
southwestern edge of Australia and compared the 
diff erent results. The machine learning results were 
found to be the most accurate. Jia and Ma (2017) 
applied machine learning methods to the interpolation 
of seismic data, which can signifi cantly reduce costs 
in engineering applications. In the fi eld of meteorology, 
Antonić et al. (2001) used neural networks to 
interpolate meteorological data. Research has shown 
that neural networks can accurately simulate complex 
non-linear functions (Bryan and Adams, 2002), 
making them suitable for the processing of certain 
kinds of complex non-linear relationships in data. 
Appelhans et al. (2015) used multiple machine 
learning methods to interpolate monthly average 
temperatures and, in a quantitative evaluation, found 
the results to be better than the Kriging method. Based 
on a 10-fold cross-validation testing design, regression 
trees generally performed better than linear and non-
linear regression models. 

 Out of all the diff erent marine elements, 
temperature, especially sea surface temperature 
(SST), has the greatest impact on air-sea interactions 
(Thompson et al., 2017). In order to reduce the 
obvious errors of traditional interpolation methods 
near the off shore area and islands, this paper uses 
machine learning methods to interpolate SST. There 
are numerous diff erent machine learning methods. 
The kernel method can transform linear learning into 
non-linear learning by introducing a kernel function. 
This can map linearly inseparable problems in an 
original sample space to a higher-dimensional feature 
space where the linearly inseparable problem will be 
solved (Hofmann et al., 2008). Common machine 
learning methods for classifi cation or regression that 
apply kernel functions include support vector 
machines (SVM), support vector regression (SVR), 
and gaussian process regression (GPR). In the fi eld of 

meteorology, kernel methods have also performed 
well. Wang and Zhang (2005) used weighted least 
squares support vector machines (WLS-SVMs) to 
estimate wind speed and found this could accurately 
track wind speed trends and produce highly accurate 
estimations. Wang and Chaib-draa (2017) proposed a 
novel online Bayesian fi ltering framework for large-
scale GPR and applied it to global surface temperature 
analysis. The results showed that this approach was 
an effi  cient and accurate expert system for global 
surface temperature analysis. Paniagua-Tineo et al. 
(2011) used SVR to accurately predict the maximum 
temperature over a period of 24 hours by introducing 
predictors such as temperature, precipitation, relative 
humidity, and barometric pressure. Based on statistical 
tests, the SVR performed better than a Multi-layer 
perceptron and an Extreme Learning Machine in this 
prediction problem. 

 GPR has a strictly theoretical basis for its approach 
to statistical learning and is adaptable to a range of 
complex problems, including high dimensionality, 
small sample size, and nonlinearity. It is also highly 
generalizable. In comparison to neural networks and 
support vector approaches, this method has the 
advantages of easy implementation, adaptive 
acquisition of hyperparameters, and the probabilistic 
signifi cance of its outputs (He et al., 2013). It is 
therefore widely used in the fi eld of image super-
resolution (He and Siu, 2011). Improving the spatial 
resolution of SST through interpolation can actually 
be compared to image super-resolution. Both obtain 
higher resolution data from low resolution data. The 
Gaussian process defi nes a joint Gaussian distribution 
for any fi nite number of samples, which can be used 
to simulate a random sample distribution of sea 
surface temperatures. 

 Various factors can aff ect the SST (Katsaros et al., 
2005), such as the sea surface wind stress, sea surface 
heat fl ux, and ocean current velocity. These physical 
factors have diff erent infl uence radii and intensities. A 
single kernel function cannot capture this multi-scale 
information. A combined kernel function therefore 
needs to be constructed to extract their diff erent 
infl uence radii and intensities. Huang et al. (2014) 
used SVM models to predict short-term wind speeds 
and introduced diff erent climate variables as input 
features to produce ideal prediction results. Grover et 
al. (2015) used wind direction, spatial distance, 
pressure, and temperature to infer long-term spatial 
dependencies through GPR. 

 Taking all of the above into account, this paper 
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presents the design of an SST interpolation algorithm 
based on GPR. By constructing a combined kernel 
function, latitude and longitude, sea surface wind 
stress, sea surface heat fl ux, and ocean current velocity 
are used as input features to establish the regression 
relationship between these non-linear features and 
SST, which can eff ectively reduce the interpolation 
error near the off shore area and islands. 

 The remaining sections of the paper are organized 
as follows: Section 2 introduces the basic principles 
of GPR, commonly-used kernel functions, multi-
scale kernel functions for processing meteorological 
ocean processes and SST interpolation algorithms 
based on GPR. Section 3 presents the results of some 
SST interpolation experiments. The last section gives 
our overall conclusions. 

 2 GAUSSIAN PROCESS REGRESSION 
AND KERNEL FUNCTION 

 2.1 Gaussian process regression 

 A Gaussian process can be applied to a set of any 
fi nite random variables that obey a joint Gaussian 
distribution (Rasmussen and Williams, 2006). It can 
be fully represented by its mean function and 
covariance function, i.e.: 

  f ( x )~GP( m ( x ),  k ( x ,  x′ )),  
 where, GP is an abbreviation for Gaussian process,  x  
and  x′  are arbitrary random variables, and 

  m ( x )= E ( x ), 
  k ( x ,  x′ )= E [( f ( x )– m ( x ))( f ( x′ )– m ( x′ ))]. 
 For the purposes of simplifi cation, the mean 

function is typically taken to be 0 (Rasmussen and 
Williams, 2006). 

 Let us suppose there is a training set,  D ={( x  i , 
 y  i )| i =1, 2, ∙∙∙,  n }=( X ,  y ), where,  x    R  d  is a  d -dimensional 
input vector, and  X ={ x  1 ,  x  2 , ∙∙∙,  x  n } is a  d × n -dimensional 
input matrix.  y  i    R  is the corresponding output scalar 
and  y  is the output vector.  R  is a real number fi eld, and 
 R  d  is a d-dimensional real number space. 

 Assuming the training set is noisy, the following 
model can be used: 

  y = f ( x )+  . 
 If 2~ (0,  )nN   , we can get the prior distribution 

of  y  as follows: 
 2~ (0,  ( ,  ) ).n ny K X X I   
 Assuming that  y  *    is the predicted value 

corresponding to the test point,  x  * , the joint Gaussian 
distribution of  y  and  y  *  can be obtained as follows: 
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 If there are  n  training points and  n  *  test points, then 
 K ( X ,  x  * ) represents the  n × n  *  order covariance matrix 
used to measure the correlation between  x  and  x  * . The 
same is true for  K ( X ,  X ),  K ( x  * ,  X ), and  k ( x  * ,  x  * ).  I  n  is an 
n-dimensional identity matrix,  x  is the input vector, 
and  N  is the distribution. 

 GPR is a non-parametric algorithm based on 
Bayesian framework, the Bayesian posterior 
distribution of  y  *  is: 

 | , , ~ ( ,  cov( )).y X y x N y y      
 The mean and variance of the predicted values of 

corresponding to are: 
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 GPR obtains the entire distribution at the point to 
be predicted. The mean is then usually chosen as the 
best regression value. 

 2.2 Kernel function 

 The key feature of Gaussian process regression is 
that the covariance matrix, K, of the joint Gaussian 
distribution has to be a symmetric semi-defi nite 
matrix. In the kernel method, the kernel functions are 
all symmetric and semi-defi nite, so, theoretically the 
kernel functions used in machine learning can be used 
as covariance matrices. The squared exponential (SE) 
covariance function is the most commonly used 
kernel function. It can be expressed as follows: 

 
2

SE 2( ) exp - ,
2
rk r
l

 
  

 
  

 where,  l  is the length scale,  r = x – x′ ,  x  and  x′  are the 
input vectors in the test set and training set, 
respectively. 

 The SE covariance function is infi nitely 
diff erentiable, so, a Gaussian process with this 
covariance function has mean square derivatives of 
all orders, making it very smooth and only able to 
handle single features. This means it is not suitable 
for modeling complex physical processes (Rasmussen 
and Williams, 2006). 

 The rational quadratic (RQ) kernel function diff ers 
from the SE covariance function in its ability to 
handle features with diff erent length scales. It can 
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deliver very fi ne simulations of various abnormal sea 
surface temperatures along coasts and near islands. 
The function can be expressed as follows: 
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 when the hyperparameters  l  and  α  are greater than 0, 
it can be regarded as an infi nite scale mixture of the 
SE covariance function with diff erent length scale 
features (Rasmussen and Williams, 2006). Thus, it 
amounts to the sum of multiple kernel functions. 

 Unlike the smooth characteristics of the SE 
covariance function, the Matérn class kernel function’s 
characteristics are rough. Its general expression is as 
follows: 
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 where,  l  is a length scale hyperparameter;  K  v  is a 
modifi ed Bessel function; and Γ is a gamma function. 
 v = p +1/2 ( p  is a non-negative integer, such as 1, 2, 3, 
etc). The smaller the value of  v , the better the function 
can handle complex nonlinear relationships. This 
makes it more suitable for handling meteorological 
and oceanic processes. Commonly,  v =1/2, 3/2, or 5/2. 

 If  v =1/2, the kernel function can be simplifi ed as 
follows: 

 1
2

( ) exp - .
v

rk r
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 It has been proven that the sum, product, and scale 
of existing kernel functions are still kernel functions 
(Rasmussen and Williams, 2006). Multi-scale 
information can be extracted by combining kernel 
functions, with the appropriate kernel functions being 
selected and combined according to a combination 
rule to extract the characteristic information for 
diff erent physical processes in a targeted fashion. The 
length-scale hyperparameter  l  relates to the infl uence 
radius of each feature. 

 2.3 GPR-based interpolation algorithm 

 SST is the result of a combination of thermal, 
dynamic oceanic processes and air-sea interactions. 
Due to the complexity and randomness of its 
infl uencing factors, the latitude and longitude 
distribution of SST is uneven. As a result of the 
infl uence of the sea surface wind and sea surface heat 
fl ux, SST may also be subject to abnormal local 
phenomena in some areas. Furthermore, it can also be 
aff ected by coastal runoff  in off shore areas and around 

islands. At the same time, SST is not entirely chaotic 
with time. Generally speaking, changes in SST adhere 
to a signifi cant annual cycle and are seasonally 
aff ected (Du et al., 2003). 

 As similarly spatially located samples have similar 
distributions, the geographic location (longitude, 
latitude) can be used as an initial input feature. In 
view of the physical causes and infl uencing factors of 
SST, zonal sea surface wind stress, meridional sea 
surface wind stress, sea surface heat fl ux, zonal 
current velocity, and meridional current velocity can 
be selected as additional input characteristics. 

 The Matérn class kernel function is especially 
well-suited to extraction of the rough feature 
distribution of SST. The rougher the function, the 
more detailed the changes that can be extracted. As 
noted above, the RQ kernel function can be regarded 
as the sum of numerous SE covariance functions with 
diff erent length scale features. This function can 
simultaneously fi t a wide range of uniform temperature 
distributions across the ocean surface and abnormal 
local temperature changes, including in coastal areas 
and around islands. 

 In view of the various factors that can infl uence 
SST, a combined kernel function,  k  s , was constructed 
to describe the distribution characteristics of SST: 

  k  s (∙,∙)= k  m (∙,∙)+ k  r (∙,∙), 
  k  m (∙,∙), here, represents a Matérn class kernel function 
when  v =1/2.  k  r (∙,∙) represents an RQ kernel function. 
Matérn class kernel functions can describe complex 
non-linear features that aff ect SST, while the RQ 
kernel function can describe the distribution 
characteristics of SST from diff erent shores to distant 
seas at diff erent scales. 

 Specifi cally, 
 ( ,  ) exp(- ),mk x x r    

 

-2

( ,  ) 1 ,
2r
rk x x




 

   
 

  

 where -1 2( ) ( ) , diag( ) .Tr x x P x x P l      

 The hyperparameters  α  and  l  in the kernel function 
are both unknown and can be set to 0 until derived 
from a marginal likelihood logarithm. 

 The training and prediction process of the 
interpolation algorithm is shown in Fig.1. 

 3 A CASE STUDY OF SST 

 To assess the validity of the proposed approach, we 
used the Global Ocean Reanalysis Dataset SODA 
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(Simple Ocean Date Assimilation) developed by the 
University of Maryland and Texas A & M University. 
The spatial resolution of this product is 0.5°×0.5°; the 
latitudinal and longitudinal range is  0.25°E–180°–
0.25°W, 74.75°S–89.75°N; and the layers are 
unequally spaced in a vertical direction, with there 
being a total of 50 layers. In this paper, the temperature 
to a depth of 5 m was selected as the SST. 

 The experiment used monthly data from 2014 to 
2015. The study area was 0°–66°N, 100°E–180°. The 
training set had a resolution of 1°×1° and was sampled 
from the original data set for the 12 months in 2014. 
The remaining data was used as the validation set. 
This selection was chosen to train and obtain 
hyperparameters from the data of a single month and 
to explore the eff ect of monthly and seasonal changes 
in sea surface temperature on the interpolation eff ect. 
Out of these 12 sets of training and validation 
experiments, the best set of hyperparameters was 
selected. The data from the South China Sea in May 
2015 was then selected as a test set. The experimental 
process is shown in Fig.2. 

 It should also be noted that, because the focus was 
the sea surface temperature, invalid values in the land 
area had to be eliminated. The input variables were 

the longitude, latitude, zonal sea surface wind stress, 
meridional sea surface wind stress, sea surface heat 
fl ux, zonal current velocity at 5 m, and meridional 
current velocity at 5 m. The control experiments were 
bilinear interpolation, bicubic interpolation, nearest 
neighbor interpolation, Support Vector Regression 
and Principal Component Regression (hereinafter 
referred to as Bilinear, Cubic, Nearest, SVR and 
PCR). 

 The root mean square error (RMSE) was used to 
evaluate the accuracy of the interpolation, which can 
be defi ned as follows: 

 2

1

1RMSE= (original predicted ) ,
n

i in
  

 in which, original i  is the  i -th SST in the original data; 
predicted i  is the  i -th predicted value; and  n  is the 
number of interpolation points. The RMSE represents 
the average deviation between the predicted and 
original values. 

 As noted above, the SST interpolation results can 
also easily be described in image form. The structural 
similarity index (SSIM) is a common indicator for 
measuring the similarity of two images, so the SSIM 
can also be used to evaluate the interpolation results. 
Assuming the two input images are  x  and  y , the SSIM 
can be defi ned as: 
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 where  l ( x ,  y ) is the brightness comparison;  c ( x ,  y ) is the 
contrast comparison; and  s ( x ,  y ) is the structural 
comparison.  μ  x  and  μ  y  represent the average of  x  and  y ; 
 σ  x  and  σ  y    represent the standard deviation; and  σ  x  y  
represents the covariance of  x  and  y .  c  1 ,  c  2 , and  c  3  are 
constants to avoid system errors caused by there being 
a denominator of 0. Generally, we set  α = β = γ =1,  c  1 = 
6.502 5,  c  2 =58.522 5, and   c  3 =c  2/ 2 (Wang et al., 2004). 

 The SSIM range is 0 to 1. The more similar the two 
images, the greater its value. When the two images 
are exactly the same, the SSIM value is equal to 1. 

 3.1 Results of the single test set 

 Through the experiments on the validation set, 
based on the results of the RMSE and SSIM 
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evaluations, it was established that the parameters 
generated from the training set for September 2014 
provided the optimal model, the parameters generated 
by machine learning include hyperparameters in the 
mean function, covariance function, and likelihood 
function. This model was therefore used to predict the 
test set. Excluding the land area, the test set had 1 397 
eff ective interpolation points. The test area was the 
South China Sea, as specifi ed above, which will 
hereinafter be referred to as “Region 1”. 

 It can be immediately seen in Fig.3 that the 
interpolation eff ect using GPR was better than the 
Bilinear, Cubic, Nearest, and PCR interpolation 
methods in most areas, especially at the land-sea 
boundaries. As a kernel machine learning method, the 
SVR interpolation method had similar advantages as 
GPR, but it was still slightly worse than the 
interpolation eff ect of GPR. The comparative RMSE 
results in Table 1 show that the RMSE obtained by the 
GPR interpolation was 62.4% lower than Nearest 
interpolation, 43.7% lower than Cubic interpolation, 
and 38.9% lower than Bilinear interpolation. 

 It is noted also that, if the result of the interpolation 
is exactly the same as the true value, you can draw a 
graph where all the diff erences are 0 (i.e., green). If 

this fi gure is used as a reference, the SSIM values 
between the diff erence map and the reference map 
generated by the above six methods can be calculated. 
The diff erence between the results obtained by the six 
interpolation methods and the original image can then 
be measured, as is also shown in Table 1. It was found 
that the value of the GPR interpolation was still the 
closest to 1. This shows that, even if the super-
resolution accuracy is measured from an image 
perspective, the GPR interpolation is still better than 
the other types of interpolation. 

 3.2 The temporal and spatial generalizability of 
the interpolation algorithm 

 The generalizability of a model learned through 
machine learning refers to the extent to which it can 
be applied to a new sample. For a spatiotemporally 
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 Fig.3 Diff erence between the original SST and the result of a diff erent interpolation 
 a. the Nearest interpolation; b. the Cubic interpolation; c. the GPR interpolation; d. the PCR interpolation; e. the Bilinear interpolation; f. the SVR interpolation. 
The green area is almost 0, indicating that the interpolation result is very close to the original value. 

 Table 1 The RMSE and SSIM results of the Nearest, Cubic, 
GPR, PCR, Bilinear, and SVR interpolation 
methods for Region 1 

   Nearest  Cubic  GPR  PCR  Bilinear  SVR 

 RMSE  (°C)  0.390 8  0.260 7  0.146 8   0.289 2  0.240 3  0.171 7 

 SSIM  0.892 6  0.930 0  0.958 7  0.893 9  0.935 4  0.939 3 
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continuous geographic data interpolation algorithm, 
such as SST, its generalizability needs to be considered 
in temporal and spatial terms. 

 As the hyperparameters of the model were 
generated by training on a single month of data, it is 
necessary to examine the algorithm’s temporal 
generalizability. It can be seen from Fig.4 that the 
results for the Nearest interpolation method were the 

worst across all 12 months. The GPR interpolation 
method produced signifi cantly better interpolation 
results than the other fi ve from March to October, 
with the interpolation results in September and 
October being the best. This may be because the 
hyperparameters of the best model selected in the 
validation set were for September 2014 and SST has a 
regular interannual change. The interpolation eff ect of 
GPR for each month was consistently better than the 
other fi ve methods, indicating that the algorithm’s 
temporal generalizability is more reliable than other 
methods. 

 The above experiments were all performed in 
Region 1. We will now examine the algorithm’s 
spatial generalizability. The test time was unifi ed to 
May 2015 and two other regions were selected to 
compare the interpolation results. The selected areas 
were 0°–30°N, 125°E–150°E and 30°N–65°N, 
115°E–150°E (hereinafter referred to as Region 2 and 
Region 3). Region 2 was just ocean. Region 3 was the 
sea around both land and an island.  

 Combining the results shown in Fig.5 and Table 2, 
it can be seen that, for the ocean far from land, the 
GPR interpolation eff ect is very good, with the RMSE 
being nearly 70.6% lower than the Bilinear 
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 Fig.4 The SSTs interpolated by diff erent methods for 2015 
in Region 1 
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 Fig.5 The diff erence between the original SST and those of diff erent interpolations for 2015 in Region 2 
 a. the Nearest interpolation; b. the Cubic interpolation; c. the GPR interpolation; d. the PCR interpolation; e. the Bilinear interpolation; f. the SVR interpolation. 
There were 2 444 valid interpolation points in Region 2. 
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interpolation, 76.0% lower than Cubic interpolation 
and 81.9% lower than Nearest interpolation. It can 
also be seen in Fig.5 that the GPR method was 
signifi cantly better than the traditional method in the 
northwestern part of Region 2. This is because this 
area is located in the south of the island, and the 
interpolation of GPR method near the island can 
perform better. Similarly, machine learning methods 
including SVR and PCR interpolation method also 
had better interpolation eff ects in this area than 
traditional methods. 

 Combining the results in Fig.6 and Table 3, it can 
be seen that, for the ocean near the island, the GPR 
interpolation eff ect is still good, with the RMSE being 
nearly 34.4% lower than the Bilinear interpolation, 
42.4% lower than Cubic interpolation and 62.7% 

lower than Nearest interpolation. However, it can be 
seen that, in addition to the two kernel machine 
learning methods, other interpolation methods are 
less eff ective near the island. 

 In summary, the following conclusions can be 
drawn: 

 1. The SST interpolation results for the ocean near 
land and islands is not as good as it is for areas far 
from land. 

 2. Overall, GPR interpolation performs better than 
traditional interpolation (Bilinear, Cubic, and 
Nearest). The GPR interpolation results are very 
good, whether the ocean is far from land and islands 
or at their boundaries. 

 3. The temporal and spatial generalizability of the 
GPR interpolation algorithm is reliable. 

 Table 2 The RMSE and SSIM results of the Nearest, Cubic, 
GPR, PCR, Bilinear, and SVR interpolation 
methods for Region 2 

   Nearest  Cubic  GPR  PCR  Bilinear  SVR 

 RMSE (°C)  0.336 4  0.252 4  0.060 6  0.149 2  0.205 8  0.089 6 

 SSIM  0.869 9  0.955 4  0.984 4  0.930 9  0.960 9  0.952 2 
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 Fig.6 The diff erence between the original SST and those of diff erent interpolations for 2015 in Region 3 
 a. the Nearest interpolation; b. the Cubic interpolation; c. the GPR interpolation; d. the PCR interpolation; e. the Bilinear interpolation; f. the SVR interpolation. 
There were 1 496 valid interpolation points in Region 3. 

 Table 3 The RMSE and SSIM results of the Nearest, Cubic, 
GPR, PCR, Bilinear, and SVR interpolation 
methods for Region 3 

   Nearest  Cubic  GPR   PCR  Bilinear  SVR 

 RMSE (°C)  0.932 9  0.605 0  0.348 4   0.832 6  0.531 1  0.388 8 

 SSIM  0.856 0  0.898 9  0.937 5  0.865 6  0.899 1  0.917 2 
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 3.3 The eff ect of seasonal changes on the algorithm 

 As the best set of hyperparameters and the 
corresponding kernel functions selected by the 
validation set were generated by the training set for 
September 2014, the temporal generalizability of the 
interpolation algorithm was found to be best for the 
test sets for September and October 2015. As the SST 
is subject to signifi cant change over a 12 month period, 
we decided to explore the eff ect of using kernel 
functions generated by training in similar months. 

 The experimental setup was as follows. The GPR 
algorithms generated in February, May, August, and 
November 2014 were selected to test the data from 
January to March, April to June, July to September, 
and October to December 2015. The selected test area 
was still the South China Sea. The test results were 
compared with the original interpolation algorithm, 
the Bilinear interpolation and the Cubic interpolation 
results. 

 As can be seen in Fig.7, the GPRn interpolation 
performed worse than the original GPR interpolation 
from March to October, with the interpolation results 
for the other four months being slightly better. It is 
therefore worth considering using GPR for 
interpolation from March to October and GPRn for 
the remaining four months. Overall, both interpolation 
eff ects outperformed the Bilinear interpolation and 
the Cubic interpolation. However, the results of these 
tests suggest that the eff ect of seasonal changes on the 
GPR interpolation algorithm were not obvious. 

 3.4 Discussion of the algorithm runtime 

 It can be seen from Fig.8 that the Bilinear 
interpolation method, the Cubic interpolation method, 
and the Nearest interpolation method consume almost 
the same amount of time. When there were 1 397 
eff ective interpolation points, this was about 20–21 s, 
with the GPR interpolation method, PCR interpolation 
method, and SVR interpolation method taking about 
22–23 s. Thus, the GPR interpolation method has an 
additional time cost of about 2 s (10%). In terms of 
the improved interpolation accuracy, this cost is 
completely acceptable. 

 4 CONCLUSION 

 Improving the spatial resolution of ocean reanalysis 
datasets is very important for the study of meso-scale 
and small-scale ocean processes and sea-air 
interactions. It can also provide initial conditions and 
side boundary conditions for high-resolution regional 
models. To reduce the errors introduced by traditional 
interpolation methods that only use local neighborhood 
sample points for interpolation, this paper has sought 
to introduce physical factors such as sea surface wind 
stress, sea surface heat fl ux, ocean current velocity, 
and SST into the design of an interpolation algorithm 
based on GPR. Here, the GPR interpolation method 
has focused on the SST in SODA reanalysis products. 
The results show that this method can signifi cantly 
reduce the interpolation error. Compared with the 
nearest neighbor interpolation, bicubic interpolation, 
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 The software used in the interpolation experiment was Matlab 
R2016a. As the algorithm runs diff erently each time, the average 
time over fi ve runs was taken.  
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and bilinear interpolation methods, it had an RMSE 
that was 62.4%, 43.7%, and 38.9% lower, respectively. 
The improvement in the interpolation accuracy was 
especially obvious for coastal waters and the areas 
around islands. The algorithm showed good temporal 
and spatial generalizability. The hyperparameters 
obtained from the training set data for September 
2014 were the best. This set of parameters was able to 
generate the best interpolation results for other months 
as well. The model obtained in the training area can 
also be applied to other regions in the Western Pacifi c. 
The South China Sea is aff ected by monsoons and the 
circulation is subject to seasonal changes. We 
therefore also tested the eff ect of seasonal changes on 
the algorithm. The results showed that the eff ect of 
seasonal changes on the algorithm is not signifi cant. 

 The study reported here has several shortcomings. 
There are a number of other factors that aff ect SST, not 
all of which we have introduced into the kernel 
functions. Only the SST in ocean reanalysis datasets 
was considered. In the future, the interpolation model 
needs to be extended and interpolation algorithms for 
sea surface salinity and sea surface height will need to 
be developed to improve the spatial resolution of 
ocean reanalysis datasets in a more comprehensive 
way. The interpolation algorithm can also be extended 
below the sea surface to interpolate ocean elements 
such as temperature and salinity at various depths, 
thus enabling high-resolution display of three-
dimensional oceanic processes. This would facilitate a 
more accurate description of dynamic ocean processes 
and the development of more accurate models to 
ascertain initial fi eld and boundary conditions. 
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