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  Abstract      The SMOS (soil moisture and ocean salinity) mission undertaken by the European Space 
Agency (ESA) has provided sea surface salinity (SSS) measurements at global scale since 2009. Validation 
of SSS values retrieved from SMOS data has been done globally and regionally. However, the accuracy of 
SSS measurements by SMOS in the China seas has not been examined in detail. In this study, we compared 
retrieved SSS values from SMOS data with in situ measurements from a South China Sea (SCS) expedition 
during autumn 2011. The comparison shows that the retrieved SSS values using ascending pass data have 
much better agreement with in situ measurements than the result derived from descending pass data. 
Accuracy in terms of bias and root mean square error (RMS) of the SSS retrieved using three different sea 
surface roughness models is very consistent, regardless of ascending or descending orbits. When ascending 
and descending measurements are combined for comparison, the retrieved SSS using a semi-empirical model 
shows the best agreement with in situ measurements, with bias -0.33 practical salinity units and RMS 0.74. 
We also investigated the impact of environmental conditions of sea surface wind and sea surface temperature 
on accuracy of the retrieved SSS. The SCS is a semi-closed basin where radio frequencies transmitted from 
the mainland strongly interfere with SMOS measurements. Therefore, accuracy of retrieved SSS shows a 
relationship with distance between the validation sites and land.  

  Keyword : sea surface salinity (SSS); soil moisture and ocean salinity (SMOS); sea surface roughness 
model; South China Sea  (SCS)

 1 INTRODUCTION 

 Global measurements of sea surface height, sea 
surface temperature, and sea surface wind by 
spaceborne sensors have reached a mature level. 
Remote measurement of sea surface salinity (SSS) 
from space began to draw our attention when the Soil 
Moisture and Ocean Salinity (SMOS) mission and 
Aquarius were launched in November 2009 and June 
2011 by the European Space Agency (ESA) and 
National Aeronautics and Space Administration 
(NASA), respectively. Seawater salinity is one of the 
most important parameters of marine environmental 
dynamics. Changes of salinity are closely related to 
the marine environment and global climate change. 
Remote sensing of SSS has a wide range of 
applications, such as the study of both large- and 

meso-scale phenomena and of nearshore marine 
environments. Both the SMOS and Aquarius satellites 
carry an L-band microwave radiometer. To obtain the 
radiation-signal precision and high spatial resolution 
data required for terrestrial and marine science 
applications, the single payload of SMOS (McMullan 
et al., 2008), the Microwave Imaging Radiometer 
with Aperture Synthesis (MIRAS), takes advantage 
of the technique of interferometric aperture synthesis 
in both the along- and across-track directions (Martín-
Neira and Goutoule, 1997). The MIRAS instrument 
comprises 69 L-band radiometer receivers, of which 
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54 are evenly distributed on three arms in a Y-shape, 
and 12 are placed in a central hub. 

 Based on the SMOS SSS Level 2 product (Zine et 
al., 2008) released by ESA, numerous assessment and 
validation tests have been conducted for global ocean 
and regional basins. Boutin et al. (2012) compared 
SSS measurements acquired between 29 July and 5 
September 2010 with Argo measurements. They 
found that 10-day averaged SSS products of spatial 
resolution 100 km×100 km have an accuracy of 0.3–
0.5 practical salinity units in terms of the standard 
deviation of Δ S  (SSS SMOS –SSS Argo ) in open water, and 
for sea surface wind speed of 3–12 m/s. Regional 
validation (Banks et al., 2012) shows that SMOS SSS 
products have good agreement with model simulation 
in the tropical/subtropical Atlantic. However, 
validation for the Indian Ocean (Subrahmanyam et 
al., 2013) indicates a large bias between the two. The 
three aforementioned validation exercises were 
conducted for SSS products acquired during a similar 
period, and they all indicated that biases of retrieved 
SSS data from SMOS ascending and descending 
passes were different. This may be attributed to 
inaccurate estimation of galactic glint, which was 
dominant during descending passes of the validation 
period (Reul et al., 2012). 

 The aforementioned validation exercises offer an 
overview of the quality of SMOS SSS products for 
global and regional basins. However, to our 
knowledge, validation of SMOS SSS data in the 
China Seas is not yet available. Very limited in situ 
measurements from Argo data of salinity in those seas 
are a major issue for the validation of SMOS products. 
If, as presently considered, SMOS measurements are 
strongly contaminated by radio-frequency interference 
in the China seas, the SSS product is not useful. 
However, accurate estimation of SSS in those seas is 
important, particularly the South China Sea (SCS). 
SSS is important in the water cycle, meso- and small-
scale phenomena, nearshore marine science research, 
and marine environment protection. Therefore, in the 
present study, we present a preliminary validation of 
SMOS SSS products through a comparison with in 
situ measurements during an expedition in the SCS. 

 Following this introduction, we give a brief 
description of the geophysical models used to retrieve 
the SMOS SSS Level 2 product. In Section 3, the 
dataset used is described and post-processing of the 
Level 2 product is introduced. A comparison of that 
product with in situ measurements is detailed in 
Section 4. We also investigate the impact of 

environmental conditions on product accuracy. A 
discussion and conclusions are given in Section 5. 

 2 SEA SURFACE ROUGHNESS MODELS 
USED TO GENERATE SMOS SSS LEVEL 2 
PRODUCT 

 The general principle for retrieving SSS from 
radiometer measurements is to generate a geophysical 
model that describes the relationship between 
brightness temperature and sea surface temperature 
(SST), SSS, radar incidence angle  θ , and sea surface 
roughness parameter  P  rough :  
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 in which the brightness temperature of microwave 
radiation  T  b, p  can be expressed as the sum of two 
temperatures, namely, brightness temperature of the 
calm sea surface  T  b fl at, p  and the excess brightness 
temperature Δ T  b   rough, p  caused by sea surface roughness. 
Here, p represents polarization.  T  b fl at, p  is described in 
detail by the Fresnel equation. The critical requirement 
for estimating brightness temperature is to resolve the 
contribution from the rough sea surface. Various 
studies (Dinnat et al., 2003; Reul et al., 2006) have 
compared the difference of SSS calculated by different 
sea surface roughness models, indicating that sea 
surface roughness models can lead to certain errors of 
SSS retrieval. In processing of the SMOS SSS 
product, three different sea surface roughness models 
were used to retrieve SSS, as described briefl y below. 

 Model 1 uses the two-scale method to solve 
electromagnetic scattering and a doubled Durden and 
Vesecky spectrum to describe sea surface roughness 
(Wentz, 1975; Durden and Vesecky, 1985; Yuhe, 
1997; Dinnat et al., 2002). 

 Model 2 uses small slope approximation emission 
theory (Irisov, 1997; Johnson and Zhang, 1999) and 
the Kudryavtsev wave spectrum (Kudryavtsev et al., 
1999). This model divides the sea surface into non-
bubble and bubble zones. For the bubble zone, a 
bubble emissivity model calculates sea surface 
emissivity. When the wind velocity at the sea surface 
is greater than 10–12 m/s, the effect of bubbles on sea 
surface emissivity is signifi cant (Reul and Chapron, 
2003). 

 Model 3 is a semi-empirical formula that was 
developed using measured emission-rate data of an 
L-band polarized sea surface in a Mediterranean 
experiment as well as oceanographic and 
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meteorological parameters (Camps et al., 2004; 
Gabarró et al., 2004). The model has been used in the 
inversion of airborne radiometer SSS data, under a 
variety of sea conditions.  

 Through the input of additional data including sea 
surface temperature, sea surface wind fi eld, and the 
initial SSS estimate, one can simulate brightness 
temperature according to Eq.1. Taking into account 
polarizations and imaging geometries, the SMOS 
SSS processor subsequently converts the simulated 
brightness temperature to the brightness temperature 
that should be measured by the SMOS satellite under 
the initial conditions. By comparing the simulated 
brightness temperature with actual SMOS 
measurement, the initial SSS is adjusted via iteration 
until that temperature is consistent with that measured 
by SMOS. 

 3 DATASET 

 3.1 SMOS SSS Level 2 product 

 The SMOS SSS Level 2 product used herein is 
generated by the ESA L2OS processor (Version 5.5). 
The accessed SMOS SSS Level 2 product includes 
three values retrieved using the three sea surface 
roughness models described above. The swath of a 
single track is 600 km. During the expedition between 
August 21 and September 27, 2011, a total of 70 
scenes of SMOS data were obtained for validation. 
There are numerous localized missing data in the 
Level 2 product. These missing data are mainly from 
contaminated brightness temperature measurements 
because of radio frequency interference. These were 
therefore fl agged as poor quality data, which were 
removed before using the dataset. 

 To reduce uncertainties of the delivered SSS 
product, we applied both temporal and spatial 
averaging. We fi rst applied a weekly average to the 
accessed SSS data. Then, a spatial fi lter of 4×4 
window was used to reduce noise in the temporally 
averaged product. Subsequently, the smoothed data 
were linearly interpolated onto a 0.05°×0.05° grid. In 
addition, to investigate the effect of grid size on SSS 
accuracy, we averaged the data further onto a larger 
grid of 1°×1°. Figure 1 shows the weekly averaged 
(September 14–20) SSS data on the 0.05°×0.05° grid 
over the SCS. From left to right panels, the three 
columns are SSS values retrieved using different sea 
surface roughness models. From upper to lower 
panels, the three rows are SSS values derived from 
ascending, descending, and combined passes. The 

plot indicates that the SSS retrieved using the three 
sea surface roughness models differed only slightly 
when considering the ascending and descending data 
separately. However, there was a major discrepancy 
of SSS between ascending and descending passes, 
revealing a contrasting trend. If both ascending and 
descending data are used, a smooth (lower panel) SSS 
map is obtained, which shows that SSS in the SCS 
was greater than 33 psu during the week. 

 3.2 In situ measurements  

 In this study, all fi eld salinity measurements were 
obtained during an expedition in autumn 2011. The 
expedition consisted of two legs; the fi rst was in the 
northern SCS from August 21 to September 5, 2011, 
and the second was in the central and southern SCS 
from September 6 to October 3, 2011. Locations of 
thesampling stations are shown in Fig.2.  

 A Seabird CTD profi ler was used to measure water 
salinity. To ensure accurate measurements for more 
than a hundred experiments over a long period, we 
used two CTDs (a SBE 911 plus CTD and SBE 19 
plus CTD) to measure profi les of water salinity and 
water temperature at each station. For each experiment, 
we compared measurements from both CTDs and 
confi rmed that there was no error introduced by 
instruments or operations. Then, an average value 
from the two measurements was used for comparison 
at each station. Figure 3 shows profi les of water 
temperature (left) and water salinity (right) measured 
by both CTDs at station No. 4 (22.268°N, 118.353°E). 
The results show identical measurements by the two 
profi lers.  

 At each station, we also measured wind speed at a 
height of 10 m. Figure 4 shows time series of sea 
surface temperature and wind speed during the 
expedition. During the experimental period, the sea 
surface temperature was between 28°C and 31°C. All 
sea surface wind speeds were less than 12 m/s. This is 
considered a suitable condition for SSS retrieval from 
SMOS measurements, since Yin et al. (2012) found a 
large difference between simulated and empirical 
results for sea surface wind speed exceeding 12 m/s. 

 4 COMPARISON OF SMOS SSS WITH IN 
SITU MEASUREMENTS 

 Here, SMOS SSS data averaged at different grid 
sizes, derived from ascending and descending passes, 
as well as those retrieved using various sea surface 
roughness models, are compared with in situ 
measurements.  
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 Fig.1 Distribution of weekly average SMOS SSS over SCS for September 14–20, 2011 
 Upper three fi gures show results of ascending orbit data, middle three show results of descending orbit data, and lower three results corresponding to all data. 
a. Weekly average SSS of Model 1; b. weekly average SSS of Model 2; c. weekly average SSS of Model 3. 
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 4.1 Result 

 We fi rst compared the weekly average SSS product 
on the 0.05°×0.05° grid with CTD measurements 
(Fig.5). As in Fig.1, from left to right panels, the 
diagrams compare SSS retrieved using the three sea 
surface roughness models. The upper, middle, and 
lower panels compare the ascending, descending, and 
combined SSS data, respectively. Statistical parameters 
for these comparisons are also listed in Table 1. The 
SSS derived from the ascending data show much 
better agreement with in situ measurements than those 
derived from the descending data. The discrepancy 
between the ascending and descending passes exceeds 
0.5 and 0.3 for bias and RMS, respectively. The three 
models of sea surface roughness yielded very similar 

retrievals for both ascending and descending data. 
Model 2 functioned best for the ascending data, with 
bias only -0.1. However, the best retrieval for the 
descending data using Model 3 had a large and 
negative bias, at -0.71. If the ascending and descending 
SMOS products were used together, the optimal bias 
and RMS were -0.43 and 0.80, respectively.  

 To analyze the effect of spatial resolution on 
accuracy of the weekly average SMOS SSS, the 
products were further averaged to grid size 1°×1°. 
Figure 6 compares these values with in situ 
measurements. Compared to Fig.5, the SSS product 
averaged over the larger grid had better agreement 
with fi eld measurements than that of the smaller grid, 
for both ascending and descending passes. In contrast 
to the comparison for SSS products averaged on the 
small grid, the ascending SSS product retrieved using 
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 Table 1 Comparison between weekly average SSS data and in situ measurements 

 Sea surface roughness model  Bias  RMS  Sea surface roughness model  Bias  RMS 

 Ascending pass 
  0.05°×0.05° 

 Model 1  -0.141  0.979 
 Ascending 
pass   1°×1° 

 Model 1  -0.065  0.828 

 Model 2  -0.100  0.928  Model 2  -0.045  0.845 

 Model 3  -0.137  0.941  Model 3  0.003  0.782 

 Descending pass   
0.05°×0.05° 

 Model 1  -0.720  1.280 
 Descending 
pass   1°×1° 

 Model 1  -0.730  1.092 

 Model 2  -0.756  1.279  Model 2  -0.764  1.069 

 Model 3  -0.706  1.248  Model 3  -0.736  1.082 

 Ascending and 
descending passes 

0.05°× 0.05° 

 Model 1  -0.469  0.851 
 Ascending and 

descending 
passes 1°×1° 

 Model 1  -0.361  0.774 

 Model 2  -0.464  0.814  Model 2  -0.374  0.779 

 Model 3  -0.428   0 . 795   Model 3  -0.333   0 . 739  
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 Fig.5 Comparison between weekly average SMOS SSS data and in situ measurements 
 Upper three fi gures show comparison of ascending orbit data, middle three a comparison of descending orbit data, and lower three fi gures a comparison of 
all data. Spatial resolution of SMOS salinity data was 0.05°×0.05°. Panels show (a) Model 1, (b) Model 2, and (c) Model 3. 
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Model 3 and averaged on the 1°×1° grid had the best 
agreement with in situ measurements, with zero bias 
and RMS of 0.78.  

 The above comparisons reveal that the SSS 
retrieved from ascending data is signifi cantly superior 
to that from descending orbit data, regardless of sea 
surface roughness model used for retrieval and grid 
size used for averaging. Therefore, the discrepancy 
between the ascending and descending SSS products 
should stem from the SMOS brightness temperature 
measurement. When the SSS product was spatially 
averaged on the 1°×1° grid, accuracy systematically 
improved. This indicates that spatial averaging can 
reduce bias in the SSS product, induced either by the 

retrieval process or original measurement of 
brightness temperature by SMOS. 

 In the following section, we investigate whether 
environmental factors infl uenced accuracy of the 
SMOS SSS product. Because the SSS derived from 
ascending data had the best performance, error 
analysis focuses on these values.  

 4.2 Impact of environmental factors on SSS accuracy  

 Equation 1 indicates that sea surface temperature is 
a key factor for retrieval from the radiometer. 
Moreover, sea surface wind speed is important in the 
sea surface roughness model, which is also included 
in Eq.1. Therefore, we fi rst analyzed the impact of 
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these two environmental factors on accuracy of the 
SSS level 2 products.  

 4.2.1 Impact of sea surface temperature  

 Error bars shown in Fig.7 indicate that the mean 
difference of SSS derived from the SMOS data and in 
situ measurements was within ±0.5 for sea surface 
temperatures 28–30°C. The substantial underestimation 
of SMOS SSS for sea surface temperatures greater 
than 30°C may be attributed to limited sampling 
measurements. We therefore conclude that the bias of 
SMOS SSS has no signifi cant dependence on sea 
surface temperature in the range 28–30°C.  

 4.2.2 Impact of sea surface wind speed  

 The bias of SMOS SSS was random for sea surface 
wind speeds less than 3 m/s   (Fig.8). From 4 to 10 m/s, 
the bias showed a slight trend approaching the in situ 
measurement with increased wind speed. For sea 
surface wind speeds greater than 10 m/s, it is diffi cult 
to derive the trend of bias related to wind speed, 
owing to limited data pairs. Nevertheless, we conclude 
that SSS retrieved from SMOS measurements has 
good accuracy, on the order of 0.5 for sea surface 
wind speeds between 3 m/s   and 10 m/s.  

 4.2.3 Radio frequency interference (RFI)  

 RFI from land is considered a strong contamination 
source regarding SMOS measurements, which 
signifi cantly limits exploitation of SMOS SSS products 
in the China seas. The SCS is surrounded by several 
countries, and RFI mainly originates from the land. 
Thus, we used the variation of bias along with distances 

between fi eld stations and the mainland to identify the 
impact of RFI contamination on SMOS SSS products.  

 Figure 9 shows bias of retrieved and measured SSS 
at various fi eld stations. Roughly, the accuracy of 
SMOS SSS is low in water regions close to southern 
Vietnam, Hainan Island of China, and south of the 
Philippines. In fact, SSS had good accuracy in the 
northern SCS, although the sampled points are near 
major population centers in southern China, such as 
Macau, Hong Kong, and Guangdong Province. SSS 
retrieved from SMOS measurements in the central 
SCS, far from the mainland, are clearly in close 
agreement with in situ measurements. 

 In Fig.10a and 10b, RFI data (released by the Centre 
d’Etudes Spatiales de la BIOsphère (CESBIO) research 

0

4

8

12

16

20

24

28

-1

-0.5

0

0.5

1

1.5

2

28.0 28.6 29.2 29.8 30.4

H
is

to
gr

am
 o

f S
SS

_I
N

SI
TU

SS
S_

SM
O

S-
SS

S_
IN

SI
TU

Sea surface temperature (°C)

SSS3_A Histogram_SSS_INSITU

 Fig.7 Distribution of mean error±standard deviation of 
retrieval results for ascending orbit data of Model 3 as 
a function of sea surface temperature measurements 
 Gray curve is histogram of in situ SSS values. 
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 Fig.8 Distribution of mean error±standard deviation of 
retrieval results for ascending orbit data of Model 3 
as a function of sea surface wind speed 
 Gray curve is histogram of in situ SSS values. 
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team) from August 26 through September 9, 2011, are 
shown for ascending and descending passes, 
respectively. Both maps indicate that the RFI magnitude 
was indeed very strong in China. This magnitude also 
had signifi cant temporal variation between ascending 
and descending passes. Although we were unable to 
obtain detailed RFI data, we found that the RFI had 
smallest magnitude at the center of the SCS, consistent 
with the bias map (Fig.9). We also see that RFI was 
smaller in the SCS than in other China seas, such as the 
East China and Yellow Seas. This indicates that the 
SMOS SSS level 2 product is applicable to the SCS. 

 5 DISCUSSION AND CONCLUSION 

 The SCS is a semi-enclosed area with complex 
environmental conditions. The suitability of ESA 
SMOS salinity products for the SCS has not been 
previously verifi ed. Owing to a lack of Argo data, 
expeditions in the SCS were conducted to obtain in 
situ measurements of water salinity for validation.  

 Because three SSS values retrieved using different 
sea surface roughness models are provided in the ESA 
SSS level 2 products, we made comparisons. For 
weekly average SSS products on a 0.05°×0.05° grid, 
Model 2 yielded the best agreement with in situ 
measurements, with bias -0.10 for ascending orbit 
data. The SSS had the best result, with bias -0.71, for 
descending orbit data when Model 3 was used as the 
sea surface roughness model. When the SSS was 
further averaged on a larger grid size 1°×1°, agreement 
between the retrieved and measured SSS was further 
improved. The best result for the ascending orbit was 
zero bias and 0.78 psu for RMS with use of Model 3.  

 When the ascending and descending measurements 
were combined, Model 3 produced the best results 
among the three sea surface roughness models, with 
bias -0.43 and RMS 0.80 for the 0.05°×0.05° grid size 
and -0.33 and 0.74 for the 1°×1°grid.  

 Following the comparison, we analyzed the impact 
of sea surface temperature and wind speed on accuracy 
of the SMOS SSS level 2 product. Bias between the 
retrieved and measured SSS was ±0.5 and had no 
signifi cant dependence on sea surface temperature in 
the range 28–30°C. For sea surface wind speeds 
between 3 m/s and 10 m/s, the retrieved SSS had 
close agreement with the in situ measurements, with a 
bias of ±0.5 too. We also investigated land 
contamination, including from the land itself and 
from land-based sources, on the SSS products. The 
retrieved SSS had the best accuracy at the center of 
the SCS. The largest bias was in water regions near 

southern Vietnam, Hainan Island of China, and the 
southern Philippines. This fi nding is consistent with 
the distribution of RFI in the SCS. 

 One distinguishing feature in the comparisons is 
asymmetry between the ascending and descending 
orbits. Our experiment showed that the discrepancy 
between the two passes exceeded 0.5 in terms of bias. 
Potential reasons for the asymmetry are contamination 
from RFI, galactic noise, and sun position with respect 
to the satellite (Font et al., 2010). Although it is 
diffi cult to investigate such reasons in this study, 
based on validation and error analysis, we recommend 
using the SMOS SSS level 2 products from ascending 
orbits for the SCS in future studies. 

 Boutin et al. (2012) verifi ed the SMOS salinity 
products and demonstrated that under the conditions of 
open water, moderate wind speed, and spatial resolution 
100 km×100 km, the standard deviation of SSS 
retrieved from ascending orbits and averaged over 
10 days was 0.3–0.5. In the present study, in the semi-
enclosed SCS, for wind speeds 0–11 m/s and spatial 
resolution 100 km×100 km, accuracy of the 7-day 
average SSS retrieved using Model 3 was 0.6–0.7 in 
terms of standard deviation. This is near the overall 
quality of the SSS level 2 product in the global ocean. 
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 Fig.10 Distribution of 15-day SMOS RFI data 
 a. Ascending orbit data; b. descending orbit data (August 26–September 9, 
2011) (©CESBIO) 
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Validation of the SMOS SSS in the China seas was 
often excluded in earlier global validations. Our study 
shows that the quality of the SSS level 2 product for the 
SCS is comparable with that in the global ocean. This 
may offer an opportunity for further studies of SSS 
measurements from space for the China seas. 

 The SMOS SSS level 2 product used in the present 
study was generated by the ESA L2OS processor 
(Version 5.5). The newest L2OS processor is version 
06.11, released on December 12, 2013. Results might 
change if the SSS products are obtained via the new 
processor. In addition, considering that brightness 
temperature measurement is very important to 
accurate SSS retrieval, simulation and validation of 
that temperature should be done in future studies. 
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