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  Abstract        Nannochloropsis   oceanica  promises to be an industrial-level producer of polyunsaturated 
fatty acids. In this study, the fastest and slowest growing  N .  oceanica  mutants were selected through 
N-methyl-N’-nitro-N-nitrosoguanidine mutation, and two mutant strains and the wild type (WT) subjected 
to transcriptome profi ling. It was found that the OD 680  reads at stationary growth phase of both WT and its 
mutants were proportional to their cell density, thus indicating their division rate and growth speed during 
culture. This chemical mutation was eff ective for improving growth performance, and the fast strain divided 
faster by upregulating the expression of genes functioning in the cell cycle and downregulating genes 
involved in synthesis of amino acids, fatty acids, and sugars as well as the construction of ribosome and 
photosynthetic machinery. However, the relationship among the eff ected genes responsible for cell cycle, 
metabolism of fatty and amino acids, and construction of ribosome and photosynthetic machinery remained 
unclear. Further genetic studies are required for clarifying the genetic/metabolic networks underpinning the 
growth performance of  N .  oceanica . These fi ndings demonstrated that this mutation strategy was eff ective for 
improving the growth performance of this species and explored a means of microalgal genetic improvement, 
particularly in species possessing a monoploid nucleus and asexual reproduction.  
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 1 INTRODUCTION 

 The development of environmentally friendly 
bioenergy is in increasing demand as it has been 
predicted that fossil fuels will be exhausted in the 
foreseeable future (Tilman et al., 2009). Microalgae, 
the primary producers of diverse ecological systems, 
grow rapidly and have the potential to aff ord 
signifi cant industrial biomass and biofuel yields 
(Wijff els and Barbosa, 2010). Unfortunately, it is far 
from reality for microalgae to produce biofuel directly 
(Petkov et al., 2012). One restriction on biofuel 
biosynthesis is the lack of elite microalgal varieties. 
Early research has mainly focused on the isolation 
and tentative culture of biofuel-producing microalgae 
(Ortiz-Marquez et al., 2013); however, neither 

domestication nor genetic improvement of these 
microalgae has been initiated. It can be realistically 
expected that eff ective methods for improving 
terrestrial crops will function well in microalgae 
(Chepurnov et al., 2011). Actually, various strategies 
have indeed been applied for microalgal genetic 
improvement. To date, protoplast fusion (Tjahjono et 
al., 1994), genetic transformation (Kawata et al., 
1991; Xue et al., 2015), chemical mutation (Zhang 
and Lee, 1997), atmosphere and room temperature 
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plasma (ARTP) mutation (Fang et al., 2013), genetic 
engineering (Ortiz-Marquez et al., 2013), selective 
breeding after genome shuffl  ing (Takouridis et al., 
2015), and diverse molecular techniques, such as 
genome editing, knocking-out, and knocking-down 
(Jinkerson and Jonikas, 2015), have been attempted 
in microalgae. Among these diverse methods for 
genetic improvement, both chemical and physical 
mutations have contributed signifi cantly to crop 
breeding and performance. Such contributions have 
also been realized in microalgae, as in  N -methyl- N ’-
nitro- N -nitrosoguanidine (MNNG) mutated 
 Chlorococcum  sp. that possess a two-fold higher 
astaxanthin content (Zhang and Lee, 1997). However, 
mutation techniques have not advanced genetic 
improvement of microalgae as a group of organisms, 
and the new tools are not available for nonmodel and 
in-culture microalgae. The yield of biomass (or 
growth speed), accumulation of desirable materials, 
and resistance to diverse stresses are the most 
important microalgal traits desirable for large-scale 
culture. Unfortunately, studies regarding these traits 
are scarce. 

 With the popularization of next-generation 
sequencing technology, transcriptome profi ling has 
evolved into a routine approach to decipher the 
physiogenetic mechanisms of desirable traits of 
animals, plants, and microorganisms, including 
microalgae (Mardis, 2008; He et al., 2012). For 
example, transcriptome analysis has provided insights 
into C4-like photosynthesis and the oil body-forming 
mechanism in  Myrmecia   incise  (Ouyang et al., 2013), 
the adaptation mechanisms of polar  Chlamydomonas  
sp. (Kim et al., 2013) and  N .  oceanica  (Guo and Yang, 
2015), and the oil accumulation mechanisms of 
 Chlorella   protothecoides  (Gao et al., 2014) and 
 Neochloris   oleoabundans  (Rismani-Yazdi et al., 
2012). However, such approaches have been little 
applied to unveiling the physiological processes and 
genetic mechanisms of the growth performance of 
microalgae. 

 The microalga  Nannochloropsis   oceanica  
possesses the potential for being a biofuel synthesizer 
(Boussiba et al., 1987; Sukenik et al., 1989). This 
species is known to be monoploid and asexual (Pan et 
al., 2011) and is thus suitable for modifi cation of both 
its nuclear and cytoplasmic genes through mutation. 
Among currently available mutation methods, 
chemical mutation is the most convenient. As a 
preliminary study in this laboratory,  N .  oceanica  was 
mutated chemically with MNNG. From the resulting 

mutated population, the fastest and slowest growth 
mutants (positive and negative growth, PMU and 
NMU, respectively) were selected, and the two 
mutants and the wild strain (WT) were subjected to 
transcriptome profi ling with the goal of understanding 
the physiological mechanisms underlining fast growth 
behavior. 

 2 MATERIAL AND METHOD 

 2.1  N .    oceanica  and its culture 

  N .  oceanica  was obtained from Key Laboratory of 
Mariculture of Chinese Ministry of Education, Ocean 
University of China. The alga was cultured in  f /2 
medium (pH 7.8, salinity 30; Guillard and Ryther, 
1962; Guillard, 1975). The  f /2 medium was prepared 
with fi ltrated seawater, which was autoclaved at 
121  C for 30 min. The alga was cultured at a constant 
temperature of 26  C and under 70 μmol photons/
(m 2 ∙s) following a 12 h/12 h light/dark regime. 

 2.2 MNNG mutation and mutant selection 

 Algal cells in the exponential growth phase were 
collected and washed twice with PBS (pH 7.2–7.4), 
resuspended and adjusted to 10 7  cells/mL   in PBS, and 
subjected to 3.5 mg/mL   MNNG mutation at room 
temperature (~25°C) for 1 h. The cells were then 
washed with PBS, resuspended in  f / 2  medium, and 
incubated in darkness overnight before being spread 
on  f / 2  solid medium (Nečas, 1975; Lee and Jones, 
1976). One month later, clear and well-separated 
colonies were selected and cultured to the stationary 
growth phase on 24-well plates, one colony in each 
well. 

 WT cultures at the stationary phase were diluted to 
various degrees while monitoring the OD 680  and the 
dilutions’ cell density measured to build an OD 680 /cell 
density curve. At diff erent initial OD 680  values 
(0.001 4, 0.007 0, and 0.035 0), WT suspensions were 
batch cultured in multiple fl asks for each dilution in 
 f / 2  medium (20 mL inoculum in a 100-mL conical 
fl ask), with the OD 680  measured every other day, one 
fl ask each time. Individual colonies were inoculated 
onto 24-well plates and cultured in  f / 2  medium to 
stationary phase, at which point each was inoculated 
into new fl asks (initial OD 680  0.001 4–0.035 0) and 
batch cultured as with the WT cultures.  

 2.3 RNA extraction and transcriptome sequencing 

 Cells were harvested at the exponential growth 
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phase, which was on day 12 for WT and days 10 and 
14 for positive and negative cells, respectively, by 
centrifugation at 5 000× g  for 7 min and immediately 
frozen in liquid nitrogen for RNA extraction. Total 
RNA of each mutant and WT was extracted using 
TRIZOL reagent (Invitrogen Corp., Carlsbad, CA, 
USA), following the manufacturer’s instructions. 
RNA degradation and genomic DNA contamination 
were evaluated through 1% agarose gel electrophoresis. 
RNA purity was evaluated using a NanoPhotometer ®   
 (Implen GmbH, Munchen, Germany). RNA 
concentration was measured using a Qubit ®  RNA 
Assay Kit in Qubit ®  2.0 Fluorometer (Life 
Technologies, Inc., Carlsbad, CA, USA). RNA 
integrity was assessed using an RNA Nano 6000 
Assay Kit of the Agilent Bioanalyzer 2100 System 
(Agilent Technologies, Inc., CA, USA). The 3′ 
poly(A)-tailed mRNA was isolated from the total 
RNA using oligo (dT)-linked magnetic beads 
(Oligotex mRNA Kits, Qiagen GmbH, Hilden, 
Germany), following manufacturer’s instructions, 
then fragmented, and used as template for fi rst-strand 
cDNA synthesis with reverse transcriptase and 
random hexamers. The second-strand cDNA was 
synthesized using RNase H and DNA polymerase I. 
After polishing the cDNA ends using T4 DNA 
polymerase and Klenow DNA polymerase at 20  C for 
30 min, a single adenine base was added to the cDNA 
3′-ends. Illumina mRNA-Seq Kit specifi c adaptors 
(Illumina Inc., San Diego, CA, USA) were then 
ligated to the resulting 3′-ends. The modifi ed cDNA 
was gel purifi ed and PCR amplifi ed, yielding a cDNA 
library the size and concentration of which was 
determined on an Agilent 2100 Bioanalyzer (Agilent 
Technologies, Inc.). The cDNA library was sequenced 
commercially with an Illumina HiSeq 2000 Sequencer 
(Beijing Novogene Bioinformatics Technology Co., 
Ltd. Beijing, China). 

 2.4 Data processing 

 After removing low quality sequencing reads, 
clean reads were assembled using Trinity (Grabherr et 
al., 2011) by setting the minimum_kmer_coverage at 
2 and other parameters at default. Gene functions 
were annotated by referring to NCBI non-redundant 
protein sequences (Nr), NCBI non-redundant 
nucleotide sequences (Nt), protein family (Pfam), 
clusters of orthologous groups of proteins (KOG/
COG), a manually annotated and reviewed protein 
sequence database (Swiss-Prot), KEGG ortholog 
(KO), and gene ontology (GO).  

 The abundance of gene transcripts was determined 
using RSEM (Li and Dewey, 2011). Clean reads were 
stacked onto the assembled transcriptome and each 
counted for its gene number. The reads were 
normalized using the expected number of fragments 
per kilobase of transcript sequence per millions base 
pairs sequenced (FPKM), which avoided the eff ects 
of sequencing depth and transcript length (Trapnell et 
al., 2010). The read counts were adjusted using the 
edgeR software package with one scaling normalizing 
factor. Diff erential expression of any two samples 
was analyzed using the DEGseq (2010) R package. 
The  P -value was adjusted using  q -value software 
(Storey and Tibshirani, 2003). The diff erential 
expression was considered signifi cant if  q -value was 
<0.005 and log 2 |foldchange|>1. 

 Diff erentially expressed genes (DEGs) were 
enriched in Gene Ontology (GO) terms with the 
GOseq R software package, based on Wallenius’ 
noncentral hypergeometric distribution (Young et al., 
2010), which can avoid length bias in DEGs. KEGG 
(Kanehisa et al., 2008; http://www.genome.jp/kegg/), 
a database that aids in understanding the high-level 
functions and utility of biological systems, and 
KOBAS software (Mao et al., 2005) were used for 
enriching DEGs into KEGG pathways. 

 3 RESULT 

 3.1 Selection of fast and slow growth mutants 

 The WT cell density was found to be linearly 
proportional to its OD 680  ( R  2 =0.999); such linearity 
also existed among the mutated strains (Fig.1a). The 
OD 680  of these suspensions might have been associated 
with a range of cell characteristics, such as cell size 
and cell growth phase. However, the cell number of a 
cell line should be the principle factor associated with 
OD 680 . WT and the mutant strains were cultured to 
stationary phase, diluted to diff erent cell densities 
(OD 680  of 0.001 4, 0.007 0, and 0.035 0), and cultured 
to obtain growth curves with diff erent initial 
concentrations. The slope of these observed growth 
curves in exponential growth phase were found to be 
slightly diff erent among the mutants but, fortunately, 
their fi nal OD 680  values were almost identical (Fig.1b). 
These fi ndings allowed the identifi cation of fast and 
slow growing strains according to their OD 680  at 
stationary phase. Comparison of the fi nal OD 680  
values of WT and 3 faster and 3 slower growing 
mutants obtained in triplicate, parallel mutation trials 
(Fig.1c) showed that they were OD 680  values were 
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proportional to their cell density. The algal colonies 
were inoculated into multiple well plates, cultured to 
stationary phase, and transferred into  f / 2  medium in 
batch culture fl asks. The initial OD 680  might vary 
between cultures, but identical fi nal OD 680  values 
should be reached by stationary phase. According to 
this understanding, 3 faster (1-39, 2-10, and 3-7) and 

3 slower (1-44, 2-23, and 3-36) growing mutants were 
selected from 153 mutants (clear and well-separated 
from other colonies) obtained from 3 mutation trials. 
After comparison, 2-10 and 2-23 were selected as the 
fastest and slowest growing mutants (PMU and 
NMU), respectively (Fig.1c). 

 3.2 RNA sequencing of WT   and mutants 

 RNA sequencing was carried out for WT, PMU, 
and NMU. The frequencies of fragments normalized 
to FPKM distributed normally and were similar 
among WT, PMU, and NMU. In total, 147 241 944 
clean reads were obtained from the three libraries. 
These reads were pooled for assembling transcripts, 
with a total of 33 307 unigenes (FPKM>0.3, mainly 
15–60 bp) assembled and ranging from 16 425–
201 bp in length with an average of 743 bp; the N50 
length was 1 230 bp. Of 33 307 unigenes, 19 051 
were annotated against at least one available database 
(Table 1) and assigned into function classifi cations of 
GO, KOG, and KEGG (Fig.2). In total, 19 611 
unigenes were shared by WT, PMU, and NMU, with 
1 121, 1 347, and 3 839 unigenes specifi c for WT, 
PMU, and NMU, respectively. 

 3.3 Diff erence among libraries 

 Between PMU and WT, 62 DEGs were detected 
(Fig.3) and, of these, 13 and 49 were upregulated and 
downregulated, respectively. Between PMU and WT, 
no DEG was signifi cantly categorized into GO terms, 
and only the peroxisome pathway was enriched 
(Table 2, Fig.4a). Focusing on the direction of 
regulatory changes, it was found that the KEGG 
pathways of fatty acid metabolism and peroxisome 
were downregulated (Table 3). Among proteins 
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 Fig.1 Growth curves of WT and six other strains (three 
faster and three slower) obtained through chemical 
mutation 
 a. linear relationship between cell density and OD 680 ; b. growth 
curve of WT inoculated at diff erent initial OD 680 ’s; c. growth curves 
of WT and six mutants. 

 Table 1 Number of unigenes functionally annotated against 
7 available databases 

 Database  No. of unigenes  Percentage  (%)

 NR  15 129  45.42 

 NT  4 241  12.73 

 KO  6 232  18.71 

 SwissProt  9 892  29.69 

 PFAM  12 877  38.66 

 GO  12 975  38.95 

 KOG  7 166  21.51 

 All databases  1 544  4.63 

 At least 1 database  19 051  57.19 

 Total  33 307  100.00 
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encoded by these DEGs, ELOVL 6  limits C 12 –C 16  fatty 
acid elongation and ACSL degrades C 12 –C 22  fatty 
acids and synthesizes acyl-CoA. Downregulation of 
their encoding genes indicated that fatty acid synthesis 
was decreased in PMU. The observed DEGs also 
included genes encoding MCM 2 , a member of the 
MCM family, which functions as a six-polymer 
complex in DNA prereplication, allowing cells to 
enter S phase, and PSMD 1 , a part of the proteasome, 
which participates in ubiquitin-mediated proteolysis, 
ensuring normal running of the cell cycle. Upregulation 
of genes encoding MCM 2  and PSMD 1  observed here 
might have indicated acceleration of cell division and 
enhancement of cell cycling by PMU. 

 Between WT and NMU, 1428 DEGs were 
identifi ed (Fig.3) and, of them, 633 and 795 were 
upregulated and downregulated, respectively. 

Between WT and NMU, KEGG pathways of ribosome 
and fatty acid metabolism were signifi cantly enriched 
(Table 4, Fig.4b). Focusing on the direction of 
regulation, upregulated KEGG pathways included 
biosynthesis of amino acids, fatty acids, pigments, 
ribosome, and photosynthetic elements (Table 5). 
NMU cells divided more slowly than those of WT and 
showed four DEGs (encoding MCM 2 , SCF, SMC 3 , 
and ATM/ATR) involved in the cell cycle that were 
downregulated. These downregulated genes were 
inferred to suggest a closing of the avenue for 
transitioning from the G 1  phase to S phase but, instead, 
promoted the synthesis of amino acids, fatty acids, 
and pigments as well as construction of ribosomes 
and photosynthetic machinery. 

 Comparison of PMU with NMU demonstrated the 
diff erential expression of 1 901 unigenes (Fig.3) and, 
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 Table 2 GO terms enriched signifi cantly by DEGs 

 DEGs between/GO term  Term description  No. of DEGs  No. of genes in term  Enrichment factor  Corrected  P -value 
 NMU and WT *  

 GO:0008152  Metabolic process  641  7 286  0.088   0.020  
 GO:0009058  Biosynthetic process  347  3 630  0.096   0.042  
 GO:0032991  Macromolecular complex  278  2 991  0.093   0.015  
 GO:0019538  Protein metabolic process  235  2 375  0.099   0.010  
 GO:0005737  Cytoplasm  218  2 160  0.101   0.000  
 GO:0044267  Cellular protein metabolic process  190  1 891  0.101   0.002  
 GO:0044444  Cytoplasmic part  189  1 726  0.1105   0.000  
 GO:0043228  Non-membrane-bounded organelle  168  1 459  0.115   0.000  
 GO:0043232  Intracellular non-membrane-bounded organelle  168  1 459  0.115   0.000  
 GO:0016491  Oxidoreductase activity  164  1 271  0.129   0.000  
 GO:0055114  Oxidation-reduction process  157  1 288  0.122   0.006  
 GO:0071840  Cellular component organization biogenesis  157  1 620  0.097   0.022  
 GO:0030529  Ribonucleoprotein complex  122  906  0.135   0.000  
 GO:0044085  Cellular component biogenesis  119  1 014  0.117   0.000  
 GO:0005198  Structural molecule activity  112  876  0.128   0.000  
 GO:0006412  Translation  108  815  0.133   0.000  
 GO:0005840  Ribosome  101  716  0.141   0.000  
 GO:0042254  Ribosome biogenesis  100  734  0.136   0.000  
 GO:0022613  Ribonucleoprotein complex biogenesis  100  742  0.135   0.000  
 GO:0003735  Structural constituent of ribosome  94  619  0.152   0.000  
 GO:0048037  Cofactor binding  73  436  0.167   0.026  
 GO:0050662  Coenzyme binding  58  326  0.178   0.040  
 GO:0032787  Monocarboxylic acid metabolic process  38  204  0.186   0.040  

 PMU and NMU 
 GO:0008152  Metabolic process  867  7 286  0.119   0.005  
 GO:0005622  Intracellular  523  4 497  0.116   0.035  
 GO:0044424  Intracellular part  508  4 326  0.117   0.010  
 GO:0044710  Single-organism metabolic process  411  2 845  0.145   0.013  
 GO:0032991  Macromolecular complex  374  2 991  0.125   0.001  
 GO:0005737  Cytoplasm  294  2 160  0.136   0.000  
 GO:0044444  Cytoplasmic part  248  1 726  0.144   0.000  
 GO:0044267  Cellular protein metabolic process  240  1 891  0.127   0.020  
 GO:0016491  Oxidoreductase activity  225  1 271  0.177   0.000  
 GO:0055114  Oxidation-reduction process  221  1 288  0.172   0.000  
 GO:0043228  Non-membrane-bounded organelle  201  1 459  0.138   0.000  
 GO:0043232  Intracellular non-membrane-bounded organelle  201  1 459  0.138   0.000  
 GO:0044085  Cellular component biogenesis  137  1 014  0.135   0.001  
 GO:0030529  Ribonucleoprotein complex  136  906  0.150   0.000  
 GO:0005198  Structural molecule activity  123  876  0.140   0.001  
 GO:0006412  Translation  121  815  0.149   0.000  
 GO:0005840  Ribosome  108  716  0.151   0.000  
 GO:0042254  Ribosome biogenesis  108  734  0.147   0.000  
 GO:0022613  Ribonucleoprotein complex biogenesis  108  742  0.146   0.000  
 GO:0003735  Structural constituent of ribosome  98  619  0.158   0.000  
 GO:0048037  Cofactor binding  93  436  0.213   0.023  
 GO:0050662  Coenzyme binding  77  326  0.236   0.007  
 GO:0006091  Generation of precursor metabolites and energy  64  353  0.181   0.002  
 GO:0006457  Protein folding  33  170  0.194   0.005  
 GO:0070469  Respiratory chain  14  50  0.280   0.022  
 GO:0019203  Carbohydrate phosphatase activity  8  12  0.667   0.022  
 GO:0042132  Fructose 1,6-bisphosphate-1-phosphatasse activity  8  12  0.667   0.022  
 GO:0050308  Sugar-phosphatase activity  8  12  0.667   0.022  

  * : no GO term enriched between PMU and WT. 
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of them, 1 014 and 887 were upregulated and 
downregulated, respectively. The only KEGG 
pathway enriched by these DEGs was fatty acid 
metabolism (Table 4, Fig.4c), in which 11 and 15 
genes were upregulated and downregulated, 
respectively. DEGs for fatty acid biosynthesis showed 
downregulation while those for fatty acid degradation 
showed upregulation. Fatty acid degradation yields 
acetyl-CoA and small intermediate molecules that 
might enter the tricarboxylic acid cycle and oxidative 
phosphorylation, generating ATP. In total, 12 DEGs 
involved in the cell cycle were upregulated, the 
relationships of which are shown in Figure 5. 
Downregulated DEGs also included genes responsible 
for the degradation of amino acids, fatty acids, 
pigments, and sugar, and construction of ribosome 
and photosynthetic machinery (Table 3). These 
fi ndings suggested the negation of the conjectures 
that (1) fast growth was controlled by genes 
functioning in cell cycle and (2) cells grew faster by 
reducing synthesis of amino acids, fatty acids, and 
sugar, as well as construction of ribosome and 
photosynthesis machinery. 

 4 DISCUSSION 

 By profi ling and comparing the transcriptome of 
the WT and two mutant strains, it was found that 
 Nannochloropsis  cells divided and thus grew more 
rapidly by downregulating the pathways of 
peroxisome and fatty acid metabolism, and 
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upregulating gene expression involved in cell division 
and cycling. These conclusions were supported by the 
NMU, which showed upregulated biosynthesis of 
amino acids, fatty acids, pigments, photosynthetic 

elements, and ribosome, while downregulating genes 
were involved in cell cycling. Direct comparison 
between the PMU and NMU indicated that, in PMU, 
fatty acid biosynthesis was downregulated while fatty 

 Table 4 KEGG pathways enriched signifi cantly by all DEGs 

 DEGs between/KEGG term  Term description  No. of DEGs  No. of genes in term  Enrichment factor  Corrected  P -value 

 PMU and WT 

 ko04146  Peroxisome  3  71  0.042   0.004  

 NMU and WT 

 ko03010  Ribosome  79  406  0.195   0.000  

 ko01212  Fatty acid metabolism  22  76  0.290   0.010  

 PMU and NMU 

 ko01212  Fatty acid metabolism  26  76  0.342   0.023  

 Table 3 Downregulated KEGG pathways enriched signifi cantly by downregulated DEGs 

 DEGs between/KEGG term  Term description  No. of DEGs  No. of genes in term  Enrichment factor  Corrected  P -value 

 PMU and WT *  

 ko01212  Fatty acid metabolism  2  76  0.026   0.016  

 ko04146  Peroxisome  3  71  0.042   0.001  

 PMU and NMU           

 ko00970  Aminoacyl- t -RNA biosynthesis  13  75  0.173   0.011  

 ko01230  Amino acid biosynthesis  29  232  0.125   0.002  

 ko01040  Unsaturated fatty acid biosynthesis  9  34  0.265   0.007  

 ko00780  Biotin metabolism  5  14  0.357   0.023  

 ko00710  Carbon fi xation in photosynthetic organisms  15  94  0.160   0.010  

 ko01200  Carbon metabolism  26  259  0.100   0.029  

 ko00906  Carotenoid biosynthesis  5  11  0.455   0.014  

 ko00061  Fatty acid biosynthesis  7  32  0.219   0.029  

 ko00062  Fatty acid elongation  7  23  0.304   0.012  

 ko01212  Fatty acid metabolism  15  76  0.197   0.002  

 ko00010  Glycolysis/gluconeogenesis  20  129  0.155   0.002  

 ko05016  Huntington’s disease  17  136  0.125   0.023  

 ko04932  Non-alcoholic fatty liver disease  12  79  0.152   0.023  

 ko00190  Oxidative phosphorylation  18  143  0.126   0.022  

 ko05012  Parkinson’s disease  15  109  0.138   0.022  

 ko00030  Pentose phosphate pathway  10  50  0.200   0.014  

 ko00195  Photosynthesis  9  53  0.170   0.034  

 ko00196  Photosynthetic antenna proteins  10  34  0.294   0.002  

 ko00860  Porphyrin and chlorophyll metabolism  16  53  0.302   0.000  

 ko03010  Ribosome  81  406  0.200   0.000  

 ko00521  Streptomycin biosynthesis  5  14  0.357   0.023  

 ko00920  Sulfur metabolism  6  26  0.231   0.040  

 ko00900  Terpenoid backbone biosynthesis  7  32  0.219   0.029  

  * : no KEGG pathway downregulated between NMU and WT. 
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acid degradation was upregulated. In PMU, 
downregulated genes also included genes responsible 
for metabolism of amino acids, fatty acids, pigments, 
and sugar as well as photosynthesis and ribosome 
assembly. These observations also indicated that 12 

DEGs functioning in the cell cycle were upregulated. 
Thus, it was concluded here that  Nannochloropsis  
cells grew faster by upregulating expression of genes 
functioning in the cell cycle and downregulating 
genes involved in synthesis of amino acids, fatty 

 Table 5 Upregulated KEGG pathways enriched signifi cantly by upregulated DEGs 

 DEGs between/KEGG term  Term description  No. of DEGs  No. of genes in term  Enrichment factor  Corrected  P -value 

 NMU and WT *  

 ko01230  Amino acid biosynthesis  22  232  0.095   0.007  

 ko01040  Unsaturated fatty acid biosynthesis  8  34  0.235   0.004  

 ko00780  Biotin metabolism  5  14  0.357   0.011  

 ko00062  Fatty acid elongation  7  23  0.304   0.004  

 ko01212  Fatty acid metabolism  12  76  0.158   0.004  

 ko00195  Photosynthesis  9  53  0.170   0.011  

 ko00196  Photosynthesis - antenna proteins  10  34  0.294   0.000  

 ko00860  Porphyrin and chlorophyll metabolism  11  53  0.208   0.002  

 ko03010  Ribosome  79  406  0.195   0.000  

 ko00920  Sulfur metabolism  6  26  0.231   0.019  

 ko00290  Valine, leucine and isoleucine biosynthesis  5  20  0.250   0.033  

  * : no KEGG pathway upregulated between PMU and WT, and PMU and NMU. 
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acids, and sugar as well as construction of ribosome 
and photosynthetic machinery (Fig.6). However, the 
relationship among genes responsible for cell cycle, 
metabolism of fatty acids, amino acids among others, 
and construction of ribosome and photosynthetic 
machinery remain unclear. Further studies, such as 
genetic investigations, are required for clarifying the 
genetic (and thus metabolic) networks underlining the 
growth performance of  Nannochloropsis . 

 Except for those mutations generated occasionally 
during DNA replication, DNA can be mutated through 
diverse natural and artifi cial methods that include 
traditional chemical and physical methods as well as 
some newly developed and widely practiced methods, 
for example, atmospheric and room temperature 
plasma (ARTP; Zhang et al., 2014) and low-energy 
heavy ion beam implantation (Tang and Yu, 2007; 
Zhang and Yu, 2009). The eff ects of these methods on 
DNA diff er. In this study, the eff ectiveness of MNNG 
mutation was illustrated, but this success did not 
indicate that MNNG mutation was the most 
appropriate or applicable method. This study explored 
a means of creating and breeding microalgal strains, 
particularly species possessing a monoploid genome 
and asexual reproduction, such as does 
 Nannochloropsis . In future studies,  Nannochloropsis  
will be mutated by other methods, with the goal of 
breeding elite strains for maximal production and to 
develop various interesting strains for genetic studies. 

 For microalgae, various strategies have been 
applied for their genetic improvement. For less 
studied microalgal species, such as  Nannochloropsis , 
new research tools should be developed for their 
improvement, as genetic transformation of 
 Nannochloropsis  has not met much success in most 
laboratories. Therefore, the identifi cation or 
development of highly eff ective transformation tools 
for this species will promote its improvement and 
deciphering of its gene functions.  

 5 CONCLUSION 

 Based on MNNG mutation and transcriptome 
profi ling, this method of mutation was shown to be 
eff ective for improving  Nannochloropsis  growth and 
that  Nannochloropsis  cells divided faster by 
downregulating pathways for peroxisome and fatty 
acid metabolism, while upregulating expression of 
genes involved in the cell cycle. Further research is 
required to determine the relationship among these 
observed changes. 
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