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  Abstract       With the increasing eff ects of global climate change and fi shing activities, the spatial distribution 
of the neon fl ying squid ( Ommastrephes   bartramii ) is changing in the traditional fi shing ground of 150°–
160°E and 38°–45°N in the northwest Pacifi c Ocean. This research aims to identify the spatial hot and cold 
spots (i.e. spatial clusters) of  O .  bartramii  to reveal its spatial structure using commercial fi shery data from 
2007 to 2010 collected by Chinese mainland squid-jigging fl eets. A relatively strongly-clustered distribution 
for  O .  bartramii  was observed using an exploratory spatial data analysis (ESDA) method. The results show 
two hot spots and one cold spot in 2007 while only one hot and one cold spots were identifi ed each year from 
2008 to 2010. The hot and cold spots in 2007 occupied 8.2% and 5.6% of the study area, respectively; these 
percentages for hot and cold spot areas were 5.8% and 3.1% in 2008, 10.2% and 2.9% in 2009, and 16.4% 
and 11.9% in 2010, respectively. Nearly half (>45%) of the squid from 2007 to 2009 reported by Chinese 
fl eets were caught in hot spot areas while this percentage reached its peak at 68.8% in 2010, indicating 
that the hot spot areas are central fi shing grounds. A further change analysis shows the area centered at 
156°E/43.5°N was persistent as a hot spot over the whole period from 2007 to 2010. Furthermore, the hot 
spots were mainly identifi ed in areas with sea surface temperature (SST) in the range of 15–20°C around 
warm Kuroshio Currents as well as with the chlorophyll- a  (chl- a ) concentration above 0.3 mg/m 3 . The 
outcome of this research improves our understanding of spatiotemporal hotspots and its variation for  O . 
 bartramii  and is useful for sustainable exploitation, assessment, and management of this squid. 

  Keyword :  Ommastrephes   bartramii ; exploratory spatial data analysis (ESDA); spatial hot spot; spatial 
autocorrelation; variation assessment; northwest Pacifi c Ocean 

 1 INTRODUCTION 

 The neon fl ying squid ( Ommastrephes   bartramii ) 
is an important oceanic cephalopod that resides with 
large stocks over the northwest Pacifi c Ocean (Chen 
et al., 2008b; Ichii et al., 2011). The stock of the 
winter-spring cohort of the squid in this area is a 
major fi shing target for the squid-jigging vessels from 
Japan, Korea, mainland China and Taiwan (Tian et 
al., 2009b; Chen et al., 2011). Existing research has 
addressed various aspects of the  O .  bartramii  in the 

northwest Pacifi c Ocean, including the biology and 
ecology (Ichii et al., 2004; Watanabe et al., 2004; 
Chen et al., 2008b; Tian et al., 2009a), fi sheries 
resources and stock assessment (Chen and Chiu, 
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1999; Yatsu et al., 2000; Ichii et al., 2006; Kurosaka et 
al., 2012), spatiotemporal patterns and their relations 
with marine environments (Wang et al., 2010; Ichii et 
al., 2011), fi shing ground forecasts (Feng et al., 
2014c), and scale eff ects on spatial patterns (Feng et 
al., 2016). In particular, the spatiotemporal distribution 
and its variation for  O .  bartramii  and other pelagic 
species have been studied for decades (Kulka et al., 
1996; Olivar et al., 2003; Bower and Ichii, 2005; 
Chen et al., 2011), and geographic information 
systems (GIS) and spatial statistics have increasingly 
been used as spatial analytical tools to identify the 
spatiotemporal patterns in fi sheries in recent years 
(Lennert-Cody et al., 2010; Gutiérrez et al., 2011; 
Cournane et al., 2013). 

 While scientists have used spatial visualization to 
graphically illustrate the fi shing eff ort data (Chen et 
al., 2008a; Wang et al., 2010), there is still a pressing 
need for experts to discover the spatial patterns and 
clusters using spatial analysis methods. Geostatistical 
methods have been used to assess fi sh abundance 
(Rivoirard et al., 2000) as well as to design fi shery 
surveys and assess fi shery stocks (Petitgas, 2001). 
Spatial autocorrelation and generalized linear model 
(GLM) were used to analyze the spatial patterns of 
the yellowfi n tuna ( Thunnus   albacares ) longline 
catch-per-unit-eff ort (CPUE) data (Nishida and Chen, 
2004). Using an iterative self-organizing data 
(ISOData) cluster algorithm, Du et al. (2002) 
investigated the spatiotemporal patterns of fi sheries 
resources from a time series of fi sheries data in the 
East China Sea. Su et al. (2004) explored the spatial 
heterogeneity and density distribution of demersal 
fi sh in the East China Sea through spatial indices such 
as Geary’s C and semi-variograms. While such 
research has contributed to the understanding of the 
spatial distribution and patterns of fi sheries resources 
and demonstrated the broad potential of GIS and 
geostatistical techniques in fi sheries research, the 
spatial distribution of fi sheries resources in term of 
their local spatial aggregation patterns, commonly 
referred to as spatial hot and cold spots (Morato et al., 
2010), are yet to be explored. A hot spot refers to an 
area (fi shing ground) with spatially clustered high 
values (resource abundance, eff ort, or catch) while a 
cold spot typically refers to an area with spatially 
clustered low values. 

 With regard to fi sheries, several crucial questions 
can be raised concerning the presence of hot and cold 
spots across the fi shing grounds, the relations between 
hot/cold spots and the central fi shing grounds, and the 

relations between hot/cold spots and its marine 
environmental conditions. Analysis of the hot/cold 
spots of CPUE is an important approach in pelagic 
fi sheries research, which can explore the spatial 
aggregation of fi sheries resources and hence refl ect 
their distribution over space. However, the patterns of 
hot/cold spots are diff erent with regard to the local 
autocorrelation statistics (such as Getis-Ord Gi *  and 
Anselin Local Moran’s I) and visualization methods 
used (Chen et al., 2008a; Chun et al., 2013). The hot/
cold spot areas can be identifi ed using both the point 
and polygon-based methods. The point-based 
assessment is to explore the type of hot/cold spots for 
each fi shing data point while the polygon-based one 
covering the entire study area is to explore the types 
of hot/cold spots in neighboring areas of each fi shing 
point. However, disadvantages exist for the polygon-
based assessment because it may over-assess the hot 
or cold spots and include some areas without fi shing 
data points (Feng et al., 2014a; Longley et al., 2015). 

 This study applies an exploratory spatial data 
analysis (ESDA) method to detect the spatial patterns 
and structure of  O .  bartramii  in the northwest Pacifi c 
Ocean. Spatial autocorrelation is one ESDA method 
that measures the degree to which a set of spatial 
features and their associated data values is clustered 
(positive spatial autocorrelation) or dispersed 
(negative spatial autocorrelation) in space (Goodchild, 
1986; Getis and Ord, 1992; Anselin, 1995; Koenig, 
1999; Getis and Aldstadt, 2010). This method can be 
implemented to identify and map statistically 
signifi cant hot and cold spots given a set of weighted 
features such as CPUE, fi shing eff ort, and catch in 
fi sheries. As a common statistical property of 
ecological variables observed across geographic 
spaces, spatial autocorrelation has been widely 
studied to identify the spatial patterns in ecology 
(Legendre, 1993), including neotropical migrant 
songbirds (Lichstein et al., 2002), population density 
of squirrels in Finland (Koenig and Knops, 1998) and 
plant ecology (Fortin et al., 1989). Theoretically, 
there are two levels of indicators to measure spatial 
autocorrelation (De Smith et al., 2007): 1) global 
index indicates global pattern of the entire fi shery 
dataset, and 2) local index identifi es clusters by 
evaluating each individual data-point of the study 
area and maps spatial clusters at local scale. 

 The purpose of this paper is to analyze both global 
and local spatial patterns and their variation of 
 O .  bartramii  in the northwest Pacifi c Ocean, aiming 
to improve the understanding of the spatial 
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distributions and dynamics of this squid. The patterns 
not only include global patterns measured by both 
summary statistics and global spatial autocorrelation 
but also include spatial hot and cold spots identifi ed 
by local spatial autocorrelation statistics. Furthermore, 
the annual variation of spatial hot and cold spots and 
the relationship between spatial patterns of the squids 
and monthly mean sea surface temperature (SST) and 
monthly mean chlorophyll- a  (chl-a) concentration 
were also analyzed using GIS techniques such as 
Kriging interpolation, change detection and map 
comparison. The research outcome improves our 
understanding of spatiotemporal hotspots and its 
variation for  O .  bartramii  in the northwest Pacifi c 
Ocean and is useful for the sustainable exploitation, 
assessment, and management of this squid. 

 2 MATERIAL AND METHOD 

 2.1 Commercial fi shery and environmental data 

 The study area is the fi shing ground of 150°–160°E 
and 38°–45°N of  O .  bartramii  in the northwest Pacifi c 
Ocean (Fig.1). Commercial fi shery data of 
 O .  bartramii  over the peak fi shing season during July 
to November from 2007 to 2010 were provided by 

Chinese Squid-jigging Technology Group (CSCTG). 
We used 100% of the commercial squid-jigging 
fi shery data for  O .  bartramii  in the areas of 150°–
160°E and 38°–45°N, which consisted of 27 fl eets 
from all three fi shing corporations (groups) of 
mainland China including Dalian (6 fl eets), Zhoushan 
(17 fl eets) and Ningbo (4 fl eets). The fi shery raw data 
include dates of fi shing, fi shing locations (longitude 
and latitude), the number of fi shing vessels operated 
per day, and daily catch of vessels. Some vessels 
recorded and reported their daily catch with fi shing 
locations and times, while other vessels only reported 
the total daily catch with a large spatial grid. To 
eliminate the infl uence of the spatio-temperal 
diff erence of the vessels, the fi shery data were 
aggregated annually and tessellated to a spatial scale 
of 0.5°×0.5°, in the form of CPUE (Tian et al., 2009b; 
Chen et al., 2011). The nominal CPUE was calculated 
as: 

 1 1
CPUE /n n

i ii i
C E

 
   ,                 (1) 

 where  n  is the total number of fi shing records within 
an area of 0.5°×0.5°,  C  i  is the catch (in tones, t) of a 
fi shing vessel per record and  E  is the corresponding 
fi shing eff ort, i.e., number of fi shing operations. 
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 Fig.1 The study area and the dataset used 
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 Each data point in Fig.1 contains the averaged 
CPUE values over the July to November period in 
each year. As such, the focus of this research is the 
annual variation in spatial patterns rather than the 
seasonal changes. At the 0.5°×0.5° spatial scale, there 
are 86 data points in 2007, 109 in 2008, 100 in 2009, 
and 165 in 2010 in the study area. Additionally, to 
examine the interaction between hot/cold spots and 
the ocean environmental conditions, monthly SST 
and chl- a  data corresponding to each CPUE data 
point were extracted for the years during 2007–2010. 
These oceanographic data, SST and chl- a  with a 
spatial resolution of 4km, were collected from 
OceanColor Web of NASA (IOCCG, http://
oceancolor.gsfc.nasa.gov). 

 2.2 Spatial autocorrelation 

 2.2.1 Global spatial autocorrelation 

 Global spatial autocorrelation was employed to 
detect the potential global spatial patterns of 
 O .  bartramii  in the northwest Pacifi c Ocean. This is 
measured using the Moran’s I index (Sokal and Oden, 
1978; Goodchild, 1986) as: 
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 where  n  is the number of samples (data points of the 
fi shery resources);  x  i  and  x  j  are the properties (i.e. 
CPUE values) of sample  i  and  j , respectively; X is 
the averaged value of all samples; and  w  ij  is the spatial 
weight matrix indicating the spatial adjacency relation 
between samples  i  and  j . Generally, the spatial weight 
matrix  w  ij  is defi ned using either an adjacency standard 
or a distance standard (Getis and Aldstadt, 2010). In 
this paper, an inverse distance method was utilized to 
defi ne the spatial weight matrix of the point-based 
fi shing data. 

 The value of Moran’s I ranges from -1 to 1. A value 
of Moran’s I larger than 0 indicates a positive 
correlation (i.e., CPUE tends to be clustered), whereas 
a value smaller than 0 indicates a negative correlation 
(i.e., CPUE tends to be dispersed). A value of 0 for 
Moran’s I indicates no autocorrelation, that is, a 
random distribution of fi sheries resources. 

 Two additional measures,  z -score and  P -value, are 
usually computed with the Moran’s I index to indicate 
whether or not a null hypothesis that states the CPUE 
are randomly distributed across the study area should 
be rejected. The  z -score is a statistical test to determine 

whether the null hypothesis of no spatial 
autocorrelation should be rejected and the  P -value 
gives the probability of obtaining the results at least 
as extreme as those observed, if the null hypothesis is 
true (Mitchell, 2005). A very small  P -value ( P <0.05) 
is associated with a very high or low  z -score (>1.96 or 
<-1.96), meaning that there is less than 5% probability 
that the observed spatial pattern is the result of a 
random process; in other words, the null hypothesis 
of no spatial autocorrelation can be rejected at the 
95% confi dence level. 

 2.2.2 Local spatial autocorrelation 

 Although Moran’s I can be used to describe the 
patterns in the global distribution of all data for 
 O .  bartramii , it does not describe the pattern at the 
local level (Longley et al., 2005), i.e. whether there 
are spatial clusters for this species. Therefore, local 
spatial autocorrelation statistics are needed to assess 
the dependency relationships across space at a local 
scale (Getis and Ord, 1992; Anselin, 2005; Peeters et 
al., 2015). The local spatial autocorrelation can be 
measured using Getis-Ord Gi *  statistic, which is given 
as: 
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 where  S  is the standard deviation of all data points in 
term of CPUE, other elements in this equation bear 
the same meaning as in Eq.2. Similar to that of the 
Moran’s I index, Getis-Ord Gi *  statistic also generate 
two additional measures, the  z -score for each sample 
and a  P -value. 

 Statistically, a  z -score larger than 2.58 ( P <0.01) 
indicates a hot spot while a  z -score lower than -2.58 
( P <0.01) indicates a cold spot. A hot spot refl ects that 
CPUE points with high values are surrounded by 
other CPUE points with similarly high values; in 
contrast, a cold spot refl ects that CPUE points with 
low values are surrounded by other CPUE points with 
similarly low values. On the other hand, the hot spots 
also indicate the areas with clustered high catch while 
the cold spots indicate the areas with clustered low 
catch. 

 If a  z -score is between -2.58 and -1.96 or between 
1.96 and 2.58, then the corresponding  P -value will be 
between 0.01 and 0.05. As a result, the underlying 
pattern could be a hot or cold spot at the 0.05 
signifi cance level, but the null hypothesis cannot be 
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rejected at the 0.01 signifi cance level, and the pattern 
could also be the result of randomly distributed 
CPUE. If a  z -score is between -1.96 and -1.65 or 
between 1.65 and 1.96, the corresponding  P -value 
will be between 0.05 and 0.10. Such a value indicates 
that support for the distribution being a hot or cold 
spot is weaker and the hypothesis that it is not the 
result of a random process cannot be accepted at the 
0.05 signifi cance level. Moreover, a  z -score between 
-1.65 and 1.65 is considered being not statistically 
signifi cant. 

 2.3 Comparison methods for hot/cold spots 

 A GIS overlay analysis based on two shape-format 
maps (Mitchell, 2005) was used to analyze the annual 
variation of location and spatial boundary of hot and 
cold spots. Such overlay analysis derives additional 
information from two or more layers covering the 
same area and then produces a comparison map 
(Longley et al., 2015). In this paper, the overlay 
method was utilized to detect the spatiotemporal 
diff erences between two adjacent years from 2007 to 
2010, and consequently, to identify and visualize the 
persistence and variation of hot and cold spots. The 
comparison map focuses on four categories including 
1) areas of persistent hot spots, 2) areas with changed 
states from a hot spot to a cold spot, 3) areas with 
changed states from a cold spot to a hot spot, and 4) 
areas of persistent cold spots. Both the persistence 
and change of the other categories with  z -scores 
ranging from -2.58 to 2.58 were not considered in this 
research. 

 A change matrix was used to retrieve the 
percentages of hot and cold spots in term of area size 
(Pontius et al., 2004; Aldwaik and Pontius Jr, 2012), 
hence to analyze the annual variation of area size. The 
change matrix is a specifi c table layout, commonly 
generated by a cell-by-cell comparison (Pontius et al., 
2004; Aldwaik and Pontius Jr, 2012), that allows 
assessing the changes between two rasterized maps. 
Each row of the matrix represents the classes of an 

earlier map, while each column represents the classes 
of a later map. 

 3 RESULT 

 3.1 Summary statistics and global patterns 

 The spatial patterns of  O .  bartramii  were detected 
using both summary statistics and the global Moran’s 
I index (Table 1), and the frequency distributions of 
the data for the four years are charted in Fig.2. 

 Table 1 shows, of the four years, both the maximum 
CPUE (7.2) and mean CPUE (2.255 8) in 2009 are the 
smallest, indicating the lowest catch (8 878 t) for 
 O .  bartramii . The mean CPUE of the other years are 
larger and their catches are 29 872 t, 26 906 t and 
15 862 t in 2007, 2008 and 2010, successively. 
Although the skewness values are all positive, the 
value of 2007 is only 0.101 1, suggesting a very weak 
left-skew and the tails are almost equally long at both 
the left and right sides (also see Fig.2). For the other 
three years, the left-skew are stronger with much 
larger skewness, indicating that the left tails are 
shorter and the mass of the distributions is concentrated 
on the left of the fi gures (Fig.2). The kurtosis values 
smaller than 3 in 2007 and 2008 indicate platykurtic 
distributions, whereas the values larger than 3 in 2009 
and 2010 indicate leptokurtic distributions (also see 
Fig.2). The coeffi  cients of variation (CV) of 2007 and 
2009 are both smaller, which indicate lower variations 
of  O .  bartramii  across space while those of 2008 and 
2010 are larger which indicate higher variations of 
this squid across space. 

 The positive value of Moran’s I index (c.f. Table 1) 
indicates that the spatial distribution of the 
 O .  bartramii  resources exhibits a degree of clustering 
each year. However, clustering characteristics of 2009 
are not strong as those of the other years because the 
Moran’s I index is only 0.293 0, but the  P -value still 
indicates that a random spatial distribution can be 
rejected at the 0.01 signifi cance level. On the other 
hand, the high  z -scores (with  P <0.01) for Moran’s I 

 Table 1 Summary statistics and global Moran’s I for  O  .   bartramii    in the northwest Pacifi c Ocean 

 Year 
 Summary statistics    Global Moran’s I 

 Max.   CPUE  Mean   CPUE  Std deviation  Skewness  Kurtosis  CV=Std/mean  Index   z -score   P -value 

 2007  10  4.356 8  2.778 6  0.101 1  1.950 0  0.637 8  0.455 6  11.408 5  0.000 0 

 2008  10.6  3.027 6  2.816 7  0.887 5  2.680 3  0.930 3    0.926 7  12.219 6  0.000 0 

 2009  7.2  2.255 8  1.337 6  1.012 2  4.257 4  0.593 0    0.293 0  9.556 9  0.000 0 

 2010  15  2.595 3  2.528 3  2.428 3  9.762 0  0.974 2    0.594 9  27.269 8  0.000 0 
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also revealed signifi cantly clustered distributions of 
 O .  bartramii . 

 3.2 Hot and cold spots 

 The hot and cold spots of  O .  bartramii  were 
detected by using Getis-Ord Gi *  based on the CPUE 
data shown in Fig.1. The computation of Getis-Ord 
Gi *  was conducted in ArcGIS 10.1 and it returned 
both  z -score and  P -value for each CPUE point. The 
 z -scores were categorized depending on Eq.3 and the 
maps of the hot and cold spots were produced from 
2007 to 2010 (Fig.3). The polygon-based  z -score 
maps in Fig.3 are the result of Kriging interpolation 
using the point-based rendering  z -scores. As a result, 
the interpolated  z -score values, where there are no 
CPUE points, could not have high accuracies. 
However, the focus of this paper is the hot and cold 
spots that supported by suffi  cient data points and 
these spots were not aff ected by the spatial 
interpolation (Fig.3). Of all hot and cold spots, the 
cold spot of 2009 had the smallest area and has been 

supported by the least number of data points; as a 
consequence, it was relatively less reliable compared 
with the others. 

 The percentages of hot/cold spots (see Table 2) for 
all four years were calculated using the polygon-
based  z -score (includes 7 types of statistics) shown in 
the maps of Getis-Ord Gi *  indexes (Fig.3). 

 Table 2 shows, the hot spots occupied 8.2% in 
2007 and 5.8% in 2008 of the study area while the 
percentage increased to 10.2% in 2009 and 16.4% in 
2010. The areas of cold spots were 5.6%, 3.1% and 
2.9% of the study area in 2007, 2008 and 2009, 
respectively, while this percentage drastically 
increased to 11.9% in 2010. This change indicates 
that the areas with “low CPUE values surrounded by 
similar low CPUE values” have drastically increased 
in 2010. The areas with signifi cance larger than 0.01 
(s.g.>0.01) were 91.1% of the study area in 2008. 
Although the percentages were smaller, they also 
reached 86.2%, 86.9% and 71.7% in 2007, 2009 and 
2010, respectively, demonstrating that most of the 
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 Fig.2 The histograms and actual distributions of CPUE for  O  .   bartramii    in the northwest Pacifi c Ocean 
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study area was neither hot nor cold spots. Table 2 also 
shows that almost half of the squids from 2007 to 
2009 reported by Chinese mainland squid-jigging 
fl eets were caught in hot spots while this percentage 
reached its peak at 68.8% in 2010. The percentage of 
the catch in the sea area being not statistically 
signifi cant (-1.65< z -score<1.65) ranks the second 
each year, mainly attributed to its dominated 
percentage in area size. In addition, the percentage of 
catch in cold spots is much lower but it is not the 
lowest one each year. 

 Moreover, location and CPUE distribution of each 
hot and cold spot was consequently detected and 
analyzed in detail. Table 3 shows the boundaries and 

summary statistics of the hot/cold spots, including 
counts, minimum, maximum and mean CPUE, and 
standard deviations. 

 There were 2 hot and 1 cold spots in 2007 while 
only 1 hot and 1 cold spots in each year during 2008–
2010 for  O .  bartramii  in the northwest Pacifi c Ocean 
(Fig.3 and Table 3). 

 The hot spots in 2007 were located at north and 
south of the study area, respectively, and the north 
one includes 10 data points and has a mean CPUE of 
7.9 occupying 4.9% of the study area; in contrast, the 
south one has a mean CPUE of 6.9 and occupied 
3.3%. In addition, the cold spot in 2007 consisting of 
13 data points and occupying 5.6% of the study area, 
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 Fig.3 Statistically signifi cant ( P -value=0.01) hot and cold spots for  O  .   bartramii  in the northwest Pacifi c Ocean from 2007 
to 2010 

 Table 2 Percentages of the area and catch corresponding to each  z  - score category from 2007 to 2010 

 Year  Type 
  z -score 

 <-2.58   (cold spot)  -2.58 to -1.96  -1.96 to -1.65  -1.65 to 1.65  1.65 to 1.96  1.96 to 2.58  >2.58   (hot spot) 

 2007 
 Area  5.6  2.8  2.3  65.5  5.4  10.2  8.2 

 Catch  10.4  2.9  1  32.4  2.9  3.7  46.7 

 2008 
 Area  3.1  2.1  1.6  82.9  1.7  2.8  5.8 

 Catch  5.9  3.2  1.5  27.4  6.2  10.4  45.4 

 2009 
 Area  2.9  9.2  11  61.5  1.9  3.3  10.2 

 Catch  0.4  0.2  1  35.5  2.7  9.1  51.1 

 2010 
 Area  11.9  18.6  10.7  38.7  1.3  2.4  16.4 

 Catch  9.1  5.4  1.7  10.1  1.8  3.1  68.8 
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and its mean CPUE (1.9) is much lower than those of 
the hot spots (Table 3). 

 The hot spot in 2008 was spatially close to the 
north one in 2007, but the area (with 5.8%, see Table 
2) of the former is slightly bigger. Table 3 shows the 
hot spot in 2008 includes 20 data points and its mean 
CPUE is 7.3, while the cold spot including 10 data 
points and occupying 3.1% of the study area only has 
a mean CPUE of 0.4, which is the lowest of the four 
years during 2007–2010. 

 The hot spot in 2009 includes 30 data points and 
occupied 10.2% of the study area, having a mean 
CPUE of 3.3 that is much lower than those of 2007 
and 2009. Meanwhile, the cold spot in 2009 only 
includes 4 data points and occupied 2.9% of the study 
area, having a mean CPUE of 1.0 that is smaller than 
those of 2007 and 2010 but larger than that of 2008. 

 In addition, the hot spot in 2010 was spatially close 
to the north hot spot in 2007 and those of 2008 and 
2009. This hot spot includes 46 data points and has a 
mean CPUE of 5.2, and its area (occupied 16.4%) is 
bigger than those of the other three years. In addition, 
the mean CPUE of the cold spot is 1.1, which is 
smaller than that of 2007 but bigger than those of 
2008 and 2009. The cold spot includes 29 data points 
and occupied 11.9% of the study area, much bigger 
than the cold spots of the other three years. 

 3.3 Annual variation of hot and cold spots 

 3.3.1 Annual variation of the boundary 

 Three change maps of hot and cold spots were 
generated for comparisons between 2007 and 2008, 
2008 and 2009, and 2009 and 2010 (Fig.4). Only two 
categories, i.e. persistent hot spots and persistent cold 
spots, have been identifi ed from the comparison 
maps. Other categories of variation related to areas 

being not statistically signifi cant were not considered 
in this research, in that these areas usually were not 
central fi shing grounds across space and time. These 
categories include the persistence of areas being not 
statistically signifi cant ( z -scores ranging from -2.58 
to 2.58), the change between areas being not 
statistically signifi cant, and the change between hot/
cold spots and areas being not statistically signifi cant. 

 The comparison between 2007 and 2008 (Fig.4a) 
shows that there were 1 cold spot (centered at 
154°E/40.5°N) with state unchanged and 1 hot spot 
(centered at 156°E/44°N) with state unchanged. 
Meanwhile, only 1 hot spot with state unchanged was 
identifi ed for each comparison from 2008 to 2010, i.e. 
2008 vs 2009 and 2009 vs 2010, and these unchanged 
hot spots were centered at 155.8°E/43.5°N and 
centered at 155.8°E/43°N, respectively. Most 
importantly, the area centered at 156°E/43.5°N was a 
persistent hot spot during 2007 to 2010, indicating a 
crucial central fi shing ground for  O .  bartramii  in the 
study area. Moreover, change or variation between 
areas being not statistically signifi cant, the “Other” 
category in Fig.4, has dominated the study area. 

 3.3.2 Annual variation of the area size 

 Using a cell-by-cell comparison derived change 
matrix, annual variation of hot and cold spots of 
 O .  bartramii  in term of area size was assessed between 
two adjacent years from 2007 to 2010 (Table 4). The 
persistence indicates the agreement between two 
adjacent years, and the loss is equal to the gain 
between two adjacent years as the total area under 
study is constant. 

 Table 4 shows 67.8% of the study area remained 
unchanged from 2007 to 2008. The areas identifi ed as 
hot spots in 2007 shrunk from 8.2% to 2.8% in 2008 
(a loss of 5.4%, c.f. Table 4) but there was a 3.0% gain 

 Table 3 Locations and summary statistics of CPUE for the hot and cold spots 

 Year  Hot/cold spot  South  North  West  East  Area   (%)  Count  Min.   CPUE  Max. CPUE  Mean CPUE  Std   deviation 

 2007 

 North hot  43.2  44.9  154.6  156.9  4.9  10.0  6.0  10.0  7.9  1.3 

 South hot  39.4  41.0  156.6  158.3  3.3  11.0  3.0  9.5  6.9  2.0 

 Cold  40.0  42.1  153.4  155.7  5.6  13.0  0.3  3.7  1.9  1.2 

 2008 
 Hot  42.7  44.6  154.9  157.6  5.8  20.0  2.8  10.6  7.3  2.1 

 Cold  40.3  41.8  152.4  154.7  3.1  10.0  0.1  1.2  0.4  0.3 

 2009 
 Hot  41.5  44.4  154.4  157.2  10.2  30.0  0.9  7.2  3.3  1.5 

 Cold  41.1  42.9  150.0  151.8  2.9  4.0  0.4  1.5  1.0  0.5 

 2010 
 Hot  41.9  45.0  154.3  158.4  16.4  46.0  1.0  15.0  5.2  3.3 

 Cold  38.6  41.2  152.6  158.4  11.9  29.0  0.2  2.5  1.1  0.5 
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in other areas resulting in a total hot spot coverage in 
2008 of 5.8% (c.f. Table 2). Meanwhile, the areas 
identifi ed as cold spots in 2007 shrunk from 5.6% to 
1.9% in 2008 (a loss of 3.7%, c.f. Table 4) but there 
was a 1.2% gain in other areas resulting in a total cold 
spot coverage in 2008 of 3.1% (c.f. Table 2). This also 
means both the hot and cold spots suff ered losses of 
coverage from 2007 to 2008, but the area identifi ed as 
being not statistically signifi cant in 2007 expanded 
from 65.5% to 82.9% in 2008 (c.f. Table 2). 

 Similarly, Table 4 shows 56.9% of the study area 

remained unchanged from 2008 to 2009, which is 
mainly attributed to the area (52.4%) identifi ed as 
being not statistically signifi cant. The areas identifi ed 
as hot spots in 2008 shrunk from 5.8% to 4.2% in 
2009 (a loss of 1.6%, c.f. Table 4) but gained 6.0% in 
other areas resulting in a total hot spot coverage in 
2009 of 10.2% (c.f. Table 2). Meanwhile, the areas 
identifi ed as cold spots in 2008 totally disappeared in 
2009 at the same location (a loss of 3.1%, c.f. Table 4) 
but gained 2.9% in other areas resulting in a total cold 
spot coverage in 2009 of 2.9% (c.f. Table 2). This 
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 Fig.4 Annual variation of boundary for hot and cold spots of  O  .   bartramii  in the northwest Pacifi c Ocean from 2007 to 2010 

 Table 4 Annual variation of percentage of area for  O  .   bartramii  in the northwest Pacifi c Ocean 

 Interval  Variation  <-2.58   (cold spot)  -2.58 to -1.96  -1.96 to -1.65  -1.65 to 1.65  1.65 to 1.96  1.96 to 2.58  >2.58   (hot spot)  Total 

 2007 vs 2008 

 Loss  3.7  2.5  2.2  4.0  5.2  9.2  5.4  32.2 

 Persistence  1.9  0.3  0.1  61.5  0.2  1.0  2.8  67.8 

 Gain  1.2  1.8  1.5  21.4  1.5  1.8  3.0  32.2 

 2008 vs 2009 

 Loss  3.1  2.1  1.4  30.5  1.7  2.7  1.6  43.1 

 Persistence  0.0  0.0  0.2  52.4  0.0  0.1  4.2  56.9 

 Gain  2.9  9.2  10.8  9.1  1.9  3.2  6.0  43.1 

 2009 vs 2010 

 Loss  2.9  6.8  8.1  30.6  1.8  2.9  1.1  54.2 

 Persistence  0.0  2.4  2.9  30.9  0.1  0.4  9.1  45.8 

 Gain  11.9  16.2  7.8  7.8  1.2  2.0  7.3  54.2 
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means coverage of hot spots signifi cantly expanded 
from 2008 to 2009, but the coverage of cold spots 
slightly decreased and completely shifted its location 
(c.f. Fig.3). 

 In addition, Table 4 shows 45.8% of the study area 
remained unchanged from 2009 to 2010, which is 
mainly attributed to 30.9% persistence of the area 
identifi ed as being not statistically signifi cant. The 
areas identifi ed as hot spots in 2009 slightly shrunk 
from 10.2% to 9.1% in 2010 (a loss of 1.1%, c.f. Table 
4) but there was a 7.3% gain in other areas resulting in 
a total hot spot coverage in 2010 of 16.4% (c.f. Table 
2). Meanwhile, the areas identifi ed as cold spots in 
2009 totally disappeared in 2010 at the same location 
(a loss of 2.9%, c.f. Table 4) but gained 11.9% in other 
areas resulting in a total cold spot coverage in 2010 of 
11.9% (c.f. Table 2). This means the coverage of both 
hot and cold spots signifi cantly increased from 2009 
to 2010, but the cold spot completely shifted its 
location (c.f. Fig.3). 

 4 DISCUSSION 

 4.1 Factors aff ecting the hot and cold spots 

 Identifi ed hot and cold spots, to some degree, were 
aff ected by several factors such as the monthly 
variation of  O .  bartramii , the spatial distribution of 
the fi shing data, and the selection of the  z -score and 
 P -value. 

 It is natural that the monthly variation has impacts 
on the results as the nominal CPUE was computed 
based on fi ve months across July–November from 
2007 to 2010. By using central feature tool (Mitchell, 
2005) in ArcGIS 10.1, the centroid of fi shing ground 
was computed for each month from July to November. 
These centroids show that their locations were 
geographically close to each other for diff erent 
months of the same year. As a result, despite the 
monthly variation of the spatial distribution of 
 O .  bartramii , the infl uence of such variations on the 
results was very limited (Chen et al., 2012). 

 The spatial distribution of commercial fi shery data 
(include CPUE and fi shing eff ort) substantially aff ects 
the results of hot and cold spots. In fact, statistically 
signifi cant hot and cold spots are the result of 
comparison between diff erent sub-areas of the same 
study area. Evidently, hot spots substantially are 
central fi shing grounds because a great majority of the 
catches reported being from these areas (c.f. Table 2). 
Moreover, Table 3 shows the hot and cold spots were 
related to diff erent fi shing sea areas with unique 

locations and CPUE features characterized by the 
summary statistics. These statistics indicate that 
fi shing areas with high catches would likely result in 
hot spots while low catches would likely result in cold 
spots. Overall, the variation in spatial hot and cold 
spots of fi sheries resources is a refl ection of the 
variation of central fi shing grounds (Feng et al., 
2014a, b). 

 The hot and cold spots were also aff ected by the 
selection of the  z -score ( P -value) that is a benchmark 
for the defi nition of the spots. In this research, a  z -
score larger than 2.58 or smaller than -2.58 was 
adopted to defi ne the hot or cold spots, which 
correspond to a high probability (99%) of rejecting 
the null hypothesis. A  z -score value of -1.96 or 1.96 
corresponding to a 95% confi dence level ( P -
value=0.05) has also been applied to defi ne the hot or 
cold spots (Mitchell, 2005; Feng et al., 2014a). 
Compared to the 0.01  P -value scheme, the areas of 
hot and cold spots under 0.05  P -value will increase 
substantially. As a consequence, those spots under 
0.05  P -value cannot be supported by suffi  cient fi shing 
points, resulting in lower reliability in analysis of 
spatial patterns, therefore this research used the 
0.01  P -value instead of 0.05  P -value. 

 Annual variation analysis shows only the persistent 
hot spots and the persistent cold spots were observed 
from 2007 to 2010, while no areas changed from a 
cold spot to a hot spot or from a hot spot to a cold spot 
were identifi ed during the same period (c.f. Fig.4). 
This means it is unlikely that areas shift their states 
between hot and cold spots. The areas being not 
statistically signifi cant and not supported by suffi  cient 
fi shing points in a year can change its state to be hot 
spots in the next year (see the gains of the hot spots in 
Table 4), indicating a new central fi shing area was 
formed. The cold spots also gained areas from those 
being not statistically signifi cant in a previous year, 
indicating the decrease of CPUE (perhaps the 
resources) that maybe aff ected by the oceanic 
environments. 

 4.2 Infl uence of ocean environments on hot/cold 
spots 

 Previous research shows that the pelagic fi sh 
population (e.g.  O .  bartramii ) has a migratory 
behavior and is vertically migrating day and night 
(Chen et al., 2011), which may be caused by a change 
in the marine environments the species inhabit. 
Several marine environmental factors have been 
identifi ed as the main reasons for the variation of 
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central fi shing grounds, which include the cold 
Oyashio and warm Kuroshio Currents, SST, chl- a  
concentration, and global climate change (Chen et al., 
2008a; Wang et al., 2010; Ichii et al., 2011). To 
analyze the infl uence of ocean environments on hot 
and cold spots, two important factors, monthly mean 
SST and monthly mean chl- a  concentrations, were 
selected and processed to be contour lines (Figs.5, 6) 
in ArcGIS 10.1. 

 The Kuroshio is a warm ocean current where the 
SST is higher than 15°C while the Oyashio is a cold 

ocean current where the SST is lower than 5°C (Chen 
et al., 2012). These two currents have a major eff ect 
on the spatial distribution of  O .  bartramii  in the 
northwest Pacifi c Ocean (Chen et al., 2011; Feng et 
al., 2014b). Figure 5 shows the monthly mean SST 
was the highest in August for all four years and it 
decreased gradually from September to November. In 
addition, warm water masses were identifi ed in 
October and November 2008, November 2009, and 
October 2010. For 2007, the north hot spot was 
formed mainly by the high catches in August and 
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September where the mean SST was around 15°C on 
the north side of warm Kuroshio Current; whereas, 
the south hot spot was formed mainly by the high 
catch in July where the mean SST was in the range of 
15–18°C on the south side of warm Kuroshio Current. 
Meanwhile, the cold spot this year was formed mainly 
by the low catch in July, August, and November, 
where the mean SST were much higher than warm 
Kuroshio Current. 

 The hot spot in 2008 was formed mainly by the 
high catches in July, August and September where the 

mean SST was around 15°C in relation to warm 
Kuroshio Current; whereas, the cold spot this year 
was formed mainly by the low catches also in August 
and September in other areas where the mean SST 
were much higher. Figure 5 also shows that the hot 
spot in 2009 was formed mainly by the high catches 
in July, August and October where the mean SST was 
around 15°C between warm Kuroshio Current and 
cold Oyashio Current; however, the cold spot formed 
by only few data points with low CPUE cannot be 
attributed to SST. The hot spot in 2010 was formed 
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mainly by the high catches in all months except 
October; whereas, the cold spot was formed mainly 
by the low catch in all months in other areas where the 
mean SST was much higher. 

 Figure 5 also shows that the cold Oyashio Currents 
were weak in the northwest Pacifi c Ocean from 2007 
to 2010 which only aff ected a small part of the study 
area. As a consequence, the warm Kuroshio Current 
has dominated in the northwest Pacifi c Ocean, 
resulting in a good harvest in most of the traditional 
fi shing grounds in 2007 (Chen et al., 2011, 2012; 
Feng et al., 2014b). Compared with 2007, CPUE in 
2008 was higher near 157°E/44°N but it was much 
lower near 157°E/40°N. The warm Kuroshio Current 
in 2010 was relatively weak and the cold Oyashio 
Current was relatively strong, and the fi shing grounds 
in the best fi shing seasons moved with the cold 
Oyashio Current. The hot and cold spots map of 2010 
shows that the hot spot is located to the north of 42°N 
while the cold spot is located to the south of 42°N. 
The spatial patterns identifi ed by the spatial 
autocorrelation is very consistent with the fi shing 
grounds of the study area, which reveals the clustering 
distributions of  O .  bartramii  as well as the locations 
of the central fi shing grounds. 

 In addition to SST, chl- a  concentration is another 
important factor aff ecting the spatial patterns of 
 O .  bartramii  in the northwest Pacifi c Ocean. 
Generally, the chl- a  concentration at higher latitudes 
are higher than those at lower latitudes (Chen et al., 
2011) and literature shows that there is a biomass 
front in the northwest Pacifi c Ocean, i.e. the transition 
zone chlorophyll front (TZCF) (Ichii et al., 2011). 
The TZCF is the boundary between the subtropical 
regions with low chl- a  concentrations and the 
subarctic regions with high chl- a  concentrations 
(Polovina et al., 2001). It was acknowledged that the 
chl- a  concentration within the TZCF is about 
0.2 mg/m 3  and  O .  bartramii  commonly forages within 
the sea at the north of the TZCF (Chen et al., 2011). 
Figure 6 shows the overlay maps of monthly mean 
chl- a  concentrations and hot and cold spot patterns of 
 O .  bartramii . 

 Figure 6 indicates that the TZCFs during July to 
August show a trend of moving north while the 
TZCFs during September to November show a trend 
of moving south. These fi ndings essentially accord 
with those reported by other scientists (Chen et al., 
2011; Ichii et al., 2011). Figure 6 also demonstrates 
that the chl- a  concentration was higher than 0.3 mg/m 3  
in the north hot spot of 2007 while it was also higher 

than 0.3 mg/m 3  in the south hot spot except in 
September and November. In contrast, the 
concentration in the cold spot was lower than 
0.3 mg/m 3  except in August and October 2007. The 
chl- a  concentration in the hot spot in 2008 was higher 
than 0.3 mg/m 3  except in July, while it was lower than 
0.3 mg/m 3  in the cold spot except in August and 
October (the same months as 2007). 

 The chl- a  concentration in 2009 was all higher 
than 0.3 mg/m 3  in both hot and cold spots. This might 
be because the cold spot this year only formed by few 
data points with low CPUE and which also cannot be 
attributed to the chl-a. The chl- a  concentration in 
2010 was higher than 0.3 mg/m 3  in the hot spot while 
it was lower than 0.3 mg/m 3  in the cold spot except in 
October and November. 

 Research conducted by Chen et al. (2011) showed 
that the central fi shing grounds in the northwest Pacifi c 
Ocean are mainly distributed within areas with a chl- a  
concentration in the range of 0.2–0.8 mg/m 3 . 
Specifi cally, this research shows the chl- a  concentration 
is above 0.3 mg/m 3  in hot spots while it is smaller than 
0.3 mg/m 3  in cold spots except for the specifi c months 
above-mentioned. From a perspective of spatial 
autocorrelation, both the hot and cold spots are 
strongly spatially clustered and a high frequency of 
fi shing activity was reported in such areas, whereas 
the other areas showing random or non-clustered 
distributions are not spatially clustered. However, only 
the hot spots, where both the CPUE and the percentages 
of catches and are usually high, can be considered as 
central fi shing grounds. 

 5 CONCLUSION 

 This paper carried out an exploratory spatial data 
analysis of  O .  bartramii  in the northwest Pacifi c 
Ocean from 2007 to 2010, using summary statistics 
and spatial autocorrelations. The hot and cold spots 
confi gurations have been explored and then visually 
mapped in a GIS environment. We concluded that the 
hot spots, where both the CPUE and the percentages 
of catches are usually high, are central fi shing 
grounds, and both the hot and cold spots are aff ected 
by the ocean environments such as SST and chl-a. 
While the results described here are based on an 
analysis of the fi shery data at the spatial scale of 
0.5°×0.5°, additional work is required to investigate 
the sensitivity of these results and to explore the 
spatial patterns in fi shery data more generally at the 
spatial scale used. 
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