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  Abstract         In this paper, we propose a new method to estimate the wave height of a specifi c return period 
based on the Hurst rule and a self-affi  ne fractal formula. A detailed description of our proposed model is 
presented in this paper. We use the proposed model to analyze wave height data recorded along the coast 
of Chaolian Island from 1963 to 1989. The results show that the performance of our proposed model in 
estimating design wave heights is superior to traditional models.  

  Keyword : Hurst rule; self-affi  nity; fractal formula; wave height of specifi c return period 

 1 INTRODUCTION 

 The selection of appropriate design parameters 
based on marine conditions is of paramount importance 
in the fi elds of off shore engineering, coastal 
engineering, and coastal disaster prevention, in order 
to estimate the return periods of waves and successfully 
issue early warnings for storms (Huseby et al., 2013; 
Rajabalinejad and Demirbilek, 2013). In the last few 
decades, the annual extreme value (AEV) method has 
been widely used to estimate the wave height of a 
specifi ed return period in marine engineering, 
hydraulic engineering, and the construction of coastal 
nuclear power plants (Muir and El-Shaarawi, 1986). 
Domestic hydraulic researchers prefer the Gumbel, 
Weibull, and Pearson type III distributions because of 
their successful applications to engineering. However, 
these have an obvious disadvantage in that they are all 
based on transcendental estimation. That is, while 
estimating using these distributions, a prescribed 
statistical distribution curve is assumed at the outset, 
and curve fi tting for the in-situ annual extreme wave 
heights is adopted. The curve is then determined and 
extended in order to estimate the design wave height 
of a specifi ed return period (Wang et al., 2010a, b, 

2011, 2012, 2013). Although this sort of method can 
pass hypothesis tests, none of these distributions hold 
in all situations for estimating marine engineering 
design parameters because of varying geographical 
and meteorological conditions.  

 Ocean waves are complicated natural phenomena. 
The primary technique initially used to study the 
statistics of ocean waves was the random wave theory 
proposed by Longuet-Higgins. Following subsequent 
development, the classical theories of ocean wave 
height statistics were established. Mei et al. (1995) 
analyzed ocean wave height series and found that the 
independence assumption regarding waves was not 
satisfi ed. Nevertheless, they found that wave height 
series are in a long-term correlation and statistically 
resemble self-affi  ne fractals. Therefore, they 
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developed the Cauchy statistical model and the fractal 
statistical model. However, the self-affi  nity and scale-
invariance of complex ocean waves can only be 
statistically analyzed. Hence, in this study, we will 
discuss the fractal properties of ocean waves through 
a statistical analysis.  

 The method proposed in this paper is diff erent from 
traditional methods, which assumes that wave heights 
satisfy a specifi c theoretical distribution in advance. 
However, the method proposed here estimates the 
wave height of a specifi ed return period by using a 
self-affi  ne fractal formula based on the Hurst rule 
from the point of view of fractal theory. After detailing 
this theory and describing the method of using the 
formula, we test our method using in-situ data 
recorded along the coast of Chaolian Island from 
1963 to 1989 and compare it with traditional methods. 
The results show that the design wave height obtained 
using our method is more accurate than that obtained 
using traditional methods when the return period is 
large. Considering the geographical conditions of the 
island and the eff ects of typhoon during summer, the 
wave heights of specifi c return periods obtained using 
extreme values during summer deviates from those 
obtained using annual extreme values as maximum as 
1.7%. This shows that our proposed method is more 
advantageous than traditional methods.  

 2 THEORETICAL BASIS 

 2.1 Hurst rule 

 In 1951, British hydrologist Hurst (1951) found 
that most natural processes follow the rule of a 
“random walk with deviation” after he studied a series 
of in-situ data. He later proposed an empirical formula 
called the Hurst rule, which can be described as 
follows. Considering a time series { x ( t )},  t =1, 2, ∙∙∙, 
there is an empirical relation for any arbitrary positive 
integer  τ  such that 

  R / S ~ τ  H ,        (1) 
 where H is a constant, called the Hurst index, in the 
range [0,1],  R  and  S  are the extreme value and mean 
square deviation, respectively. They are defi ned as 
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 In the above,  D ( t ,  τ ) is the accumulated deviation 

expressed as follows: 
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 where  μ  is the time parameter. In Eqs.3 and 4 above, 
 x   is the mean value series 
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 It is understood from Eqs.2 and 3 that the statistical 
parameter  R / S  is dimensionless and empirically 
obtained. Therefore, the Hurst rule expressed by Eq.1 
correlates the results obtained using diff erent time 
scales  τ , which makes it possible to study statistics on 
a large timescale based on small timescale statistics. 

 The Hurst index has been widely used to measure 
the correlation among data series and analyze their 
tendency. If H=1/2, it is a random walk analysis; If 
1/2<H<1 or 0<H<1/2, the tendency of the data series 
is enhanced or weakened, and it is a random walk 
with deviation analysis. The Hurst rule (Zhao et al., 
2001; Huang, 2005; Ran et al., 2009; Zhang, 2010) 
has been extensively applied to study the correlation 
and tendency of time series in hydrology, geology, 
stocks, and fi nance. It is also referred to as rescaled 
range analysis, or  R / S  analysis.  

 2.2 Self-affi  ne fractal formula 

 Brownian motion is a commonly used statistical 
model for studying random processes. Fractal 
Brownian motion was fi rst suggested by Mandelbrot 
in 1968 (Mandelbrot and Van Ness, 1968). The 
diff erence between the two models is that the former 
is independent of increment whereas the latter is 
dependent on increment. It is easy to obtain the 
correlation function between past and future 
increments for fractal Brownian motion (Chu, 2004), 
which is expressed as 

  c ( t )=2 2H    1   1,      (6) 
 where H is a constant in the range [0, 1].  

 It is easy to gather from Eq.6 that if H=1/2,  c ( t )=0: 
the past and future increments are unrelated, and the 
motion in question is Brownian with independent 
increments. If H≠1/2,  c ( t )≠0: in this case, the motion 
at hand is fractal Brownian. When 1/2<H<1,  c ( t )>0 or 
0<H<1/2,  c ( t )<0, and the future and past increments 
are positively or negatively correlated, respectively. 
Using these observations, Mandelbrot (Mandelbrot 
and Van Ness, 1968) proved that fractal Brownian 
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motion satisfi es the Hurst rule.  
 In fractal sciences, self-affi  ne statistical fractal (Li 

and Wang, 1993) requires that 
  f ( br )= b  H  f ( r ),      (7) 

 where  f ( r ) represents the characteristics of the subject.  
 Fractal Brownian motion satisfi es the requirements 

of a self-affi  ne statistical fractal (Mandelbrot and Van 
Ness, 1968), which claims that a random function 
 B  H ( t ) of time in the range [0, L] has the following 
properties: 

  E ( B  H ( t ))=0, 
 Var( B  H ( t ))~ L  2H , 
  D ( B  H ( t ))~ L  H , 

 where H is a constant in the range [0, 1].  
 If the mean square deviation  D ( B  H ( t )) is selected to 

describe the statistical characteristics of fractal 
Brownian motion, then 

  f ( bt )= D ( B  H ( t ))~ b  H  f ( t ),     (8) 

 This is equivalent to Eq.7. Therefore, fractal 
Brownian motion satisfi es the requirements of a self-
affi  ne statistical fractal. Furthermore, 

  P ( r )~ r  -  D ,       (9) 
 where  P ( r ) is a characteristic quantity and  r  is the 
increment of the variable.  

 As  P ( r ) is the probability that  x    r  and  P ( r )≤1, the 
exponent in the above equation is negative. 

 In practice,  P ( r ) can be replaced by the occurrence 
probability of the incident. If  N (   r ) represents the 
number of incidents or sets no less than  r , where  N  is 
the total number of incidents or sets,  N (   r )/ N  for 
accumulating rate and describing the statistical 
properties of wave height time series, then 

   C
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N r
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 In Eq.10, C is a constant and  D  is the number of 
dimensions of the fractal set. As a consequence, it 
becomes relatively easy to estimate the wave height 
of a specifi ed return period.   

 As discussed above, we chose fractal Brownian 
motion as the model to estimate annual extreme 
waves, which is consistent with the Hurst rule and 
satisfi es the fractal Eq.9. Together, these form the 
theoretical basis for our new method.  

 3 PROCEDURES FOR ESTIMATING 
WAVE HEIGHTS OF SPECIFIED 
RETURN PERIODS 

 3.1  R / S  analysis of annual extreme wave height  

 We analyzed the in-situ wave height data collected 
from the coastal Nuclear Plant from 1963 to 1989 (the 
data for 1976 is missing). The measured mean extreme 
wave height was 3.727 m, and the scatter diagram is 
shown in Fig.1, where the year 1963 is considered to 
be the starting point. It shows that the distribution of 
the annual extreme wave height has sharp peaks and a 
long tail, which diff ers from a Gaussian distribution.  

 Figures 2 and 3 qualitatively indicate that the wave 
height time series is a random process with tendency. 
Furthermore, in order to study the fractal of the wave 
height time series, we analyzed the data by using the 
rescaled range ( R / S ) method. We fi rst split the data for 
26 years from 1963 to 1989 into the following equally 
spaced subsections: extreme values every six months, 
for each year, and for every two years. The wave 
height time series was then defi ned as a random 
process or a process with tendency by examining the 
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 Fig.1 Annual extreme wave height scatter diagram 
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Hurst index (see Table 1). The Hurst index is 
calculated using the least square method, which takes 
the Eq.1 logarithmic. 

 From the data, we can conclude that: 
 (1) Figure 4 shows that the fi tting results of all 

three groups of data were satisfactory and  R  2  was 
always greater than 0.95, which indicates that the 
wave height time series satisfi es Eq.1: the Hurst rule. 
Thus,  R / S  analysis is applicable.  

 (2) When the timescale is altered, we can see that 
1/2<H<1 and  c ( t )>0 in all three cases (Table 1). 
According to Eq.6, the wave height time series are 
long-range correlated.  

 Following this, we only chose annual extreme 
values from 1963 to 1989 for  R / S  analysis. If 1963 is 
taken as the starting point of the time series  x ( t ), the 
value of  R ( τ ),  S ( τ ), and  R ( τ )/ S ( τ ) can be derived, as 
listed in Table 2.  

 The explicit form of the expression for  R / S  and the 
value of H can be calculated using the method of least 
squares, i.e., H=0.803 3,  c ( t )=0.522 7, and  R  2 =0.982 4. 

 As the Hurst index is 0.803 3 and  c ( t )=0.522 7>0, 
and given that the closer the Hurst index is to 1, the 
stronger the long-range correlation, this implies that 

 Table 1 Data for rescaled range ( R  /  S ) method analysis  

   Hurst Index   c ( t )   R  2  

 Every 6 months  0.836 9  0.595 2  0.974 5 

 Every year  0.803 3  0.522 7  0.982 4 

 Every 2 years  0.828 2  0.576 1  0.976 3 

 Table 2 Annual extreme values from 1963 to 1989 for  R  /  S  
analysis 

  τ   Year   R ( τ )   S ( τ )   R ( τ )/ S ( τ ) 

 1  1963       

 2  1964  7.000 0  0.700 0  10.000 0 

 3  1965  13.066 7  10.309 0  1.267 5 

 4  1966  18.250 0  10.381 1  1.758 0 

 5  1967  24.480 0  10.827 7  2.260 9 

 6  1968  29.900 0  10.678 0  2.800 1 

 7  1969  34.114 3  10.467 6  3.259 0 

 8  1970  37.275 0  10.180 6  3.661 4 

 9  1971  39.700 0  9.866 9  4.023 6 

 10  1972  41.640 0  9.559 5  4.355 9 

 11  1973  42.845 5  9.202 7  4.655 8 

 12  1974  44.075 0  8.915 2  4.943 8 

 13  1975  45.023 1  8.635 1  5.214 0 

 14  1977  45.171 4  8.322 9  5.427 4 

 15  1978  45.520 0  8.052 5  5.653 0 

 16  1979  45.806 3  7.805 5  5.868 5 

 17  1980  46.517 6  7.631 6  6.095 4 

 18  1981  46.783 3  7.425 6  6.300 3 

 19  1982  47.384 2  7.277 3  6.511 2 

 20  1983  47.910 0  7.134 1  6.715 6 

 21  1984  48.385 7  6.998 2  6.914 0 

 22  1985  48.831 8  6.871 1  7.106 8 

 23  1986  48.652 2  6.726 0  7.233 5 

 24  1987  49.000 0  6.607 8  7.415 5 

 25  1988  49.200 0  6.482 5  7.589 7 

 26  1989  49.292 3  6.358 5  7.767 9 
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the wave heights along the coast of Chaolian Island 
have long-term memory. Furthermore, from an 
average point of view, as fractal Brownian motion is 
persistent, the increasing tendency of the height of 
waves in Chaolian Island in the past corresponds to a 
similar increasing tendency in the future, and vice 
versa. Moreover, this implies that the wave height 
data along the coast of Chaolian Island is non-random. 
Both  R  2 =0.982 4 and  F =128.31 imply that  R / S  analysis 
can satisfactorily fi t annual extreme values. The 
extreme values from 1963  1989 in logarithmic 
coordinates are shown in Fig.5.  

 We then analyzed extreme values in July and August 
in the summer and compared these to the annual extreme 
values. The scattering diagram is shown in Fig.6.  

 The explicit form of the expression for  R / S , as well 
as the value of H, can be calculated using least squares 
method, i.e., H=0.842 9,  c ( t )=0.608 9, and  R  2 =0.986 8. 
The Hurst index was 0.842 9 and  c ( t )=0.608 9>0, and 
as the closer the Hurst index is to 1, the stronger the 
long-range correlation, we concluded that extreme 

values during summer have long-term memory. 
Furthermore, from an average point of view, as fractal 
Brownian motion is persistent, an increasing tendency 
of the extreme wave heights in past summers 
corresponds to a similar increasing tendency in the 
future, and vice vasa. Moreover, this implies that 
wave height data along the coast of Chaolian Island is 
non-random in the summer. The correlation coeffi  cient 
 R  2 =0.986 8 indicates that  R / S  analysis can satisfactorily 
fi t extreme values in the summer.  

 3.2 Comparisons between the fractal model and 
traditional models 

 We fi rst split the data into groups as follows: 
 (1) The extreme values for the 26 years from 1963 

to 1989 and those for the fi rst 13 years were selected. 
 (2) The extreme values in July and August for the 

26 years from 1963 to 1989 and those for the fi rst 13 
years were chosen. 

 The parameters (Jiang et al., 2004) derived using 
the data in groups (1) and (2) are presented in Tables 
3 and 4, respectively.   
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 Table 3 Parameters of the new model 

 Data 
 Parameters 

 C  D 

 Extreme values for 26 years  0.622 1  1.196 7 

 Extreme values for 13 years  0.499 8  1.064 4 
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 Table 4 Parameters of the new model 

 Data 
 Parameters 

 C  D 

 Extreme values in July and August for 26 years  0.577 3  1.154 8 

 Extreme values in July and August for 13 years  0.506 4  1.072 3 
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 From the data, we concluded that 
 (1) The parameters obtained from the long-term 

data and the short-term data were slightly diff erent 
when using the new model.  

 (2) The diff erence between the results based on 
data from July and August and those from the annual 
extreme values was less than 7%. This implies that 
our proposed model is suffi  ciently stable to predict 
annual extreme values by using wave height time 
series in July and August.   

 The annual extreme values for 26 years and the 
fi rst 13 years, as well as the extreme values during the 
summer in July and August for 26 years and the fi rst 
13 years, are shown in logarithmic coordinates in 
Fig.8.  

 The parameters and the intervals of confi dence 
level higher than 95% (Shi, 2006), by using Gumbel, 
Weibull and Pearson-III models, are shown in Table 
5. 

 The distribution fi tting functions for the Gumbel, 
Weibull, and Pearson type III models as well as the 
empirical distribution function for extreme wave 
heights are shown in Fig.9.  

 The fi gure shows that the fi tting using models 
based on none of the Gumbel, Weibull, or Pearson 
type III distributions is satisfactory. Wave heights 
occurring once every 100, 200, 400, 500, 700, and 
1 000 years, by using the Gumbel, Weibull, Pearson 
III, as well as our proposed self-affi  ne fractal model 
were estimated and are summarized in Table 6. 

 Similarly, considering seasonal eff ects, the design 
wave heights obtained using extreme values in the 
summer are listed in Table 7: 

 The above table shows that there is a slight 
diff erence between the estimated design wave heights 
of specifi ed return periods by using the self-affi  ne 
fractal model and traditional models. Consider 
Pearson type III. The diff erence between the two 
models is less than 0.294, but the values generated by 
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 Table 5 Parameters for diff erent distribution functions 

 Distribution function  Parameter  Interval 

 Gumbel   μ =41.237 2   
σ =9.515 0 

 [36.887 5, 45.586 9]  
[7.165 8, 12.634 4] 

 Weibull   a =40.108 2
   b =4.685 3 

 [36.445 7, 44.297 4]  
[3.522 1, 6.232 6] 

 Pearson-III   a =35.456 3
   b =1.047 

 [19.419 3, 64.737 2]  
[0.571 2, 1.920 6] 
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our model are larger when the return period increases, 
which means that the design wave heights obtained 
using the self-affi  ne fractal model are more rigorous. 
Moreover, the diff erence between the design wave 
heights during summer between the Pearson type III 
distribution model and our novel model is less than 
5.5%, as shown in Table 5. Furthermore, the fi tting 
results of extreme wave heights by using traditional 
models are not satisfactory according to Fig.8. 
Therefore, our self-affi  ne fractal model provides a 
new and eff ective approach to estimate design wave 
heights of specifi ed return periods that is more 
accurate.   

 So far, the collected data was largely wasted, 
because the calculations of appropriate design 

parameters in practices such as ocean engineering, 
hydraulic engineering, nuclear power plant, etc., only 
use annual extremes. However, we have found that 
when the random variable is greater than a certain 
value, the distribution a similar with the power 
function. So we introduced the self-similarity and 
scale-invariance, and proposed a new model based on 
fractal theory. The new model considers the 
information of both extreme values and values over 
threshold, meanwhile it can also refl ect their common 
characteristics. Our method can be used for calculating 
wave heights with a return period of 1 000 years for 
coastal nuclear power plants. 

 4 CONCLUDING REMARKS 
 (1) After analyzing the in-situ wave height records 

along the coast of Chaolian Island from 1963 to 1989, 
we obtained the design wave heights of the specifi ed 
return period by using  R / S  analysis and a self-affi  ne 
fractal model. Comparing these values with those 
obtained using traditional models, we found that the 
design wave heights occurring once every 100 and 
200 years by using the new model were smaller. The 
design wave heights occurring once every 300, 400, 
and 500 years were comparable, i.e., the design wave 
heights were higher than the Gumbel and Weibull 
distributions, but lower than the Pearson type III 
distribution model. The design wave heights occurring 
once every 700 and 1 000 years were larger. This 
indicated that our self-affi  ne fractal model is more 
rigorous than traditional models for estimating design 
wave heights with large return periods. On the 
contrary, traditional single-factor models tend to 
underestimate design wave heights, which is risky for 
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 Table 6 Design wave heights for diff erent distributions 

 Return 
period 

 Wave height (m) 

 Gumbel  Weibull  Pearson-III  Self-affi  ne fractal model 

 10  4.866  4.747  4.47 0  4.004 

 20  5.106  5.006  4.707  4.265 

 25  5.146   5.052   4.753   4.327  

 50  5.349  5.283  4.982  4.636 

 100  5.497  5.46 0  5.172  4.939 

 200  5.625  5.616  5.349  5.261 

 300  5.692  5.701  5.449  5.458 

 400  5.737  5.756  5.517  5.603 

 500  5.77 0  5.801  5.57 0  5.718 

 700  5.818  5.862  5.647  5.896 

 1000  5.867  5.925  5.728  6.091 

 Table 7 Design wave heights in summer for diff erent 
distributions 

 Return 
period 

 Wave height (m) 

 Gumbel  Weibull  Pearson-III  Self-affi  ne fractal model 

 10  4.917  4.8 00  4.531  4.209 

 20  5.167  5.078  4.795  4.587 

 25  5.295   5.232   4.960   4.723  

 30  5.421  5.376  5.103  4.894 

 50  5.466   5.430   5.164   4.931  

 100  5.577  5.566  5.316  5.023 

 200  5.71 0  5.734  5.516  5.222 

 300  5.781  5.827  5.628  5.424 

 400  5.827  5.888  5.705  5.572 

 500  5.862  5.935  5.764  5.69 0

 700  5.912  6.002  5.852  5.872 

 1 000  5.963  6.07 0  5.943  6.072 
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coastal structures. This is because traditional methods 
prescribe distributions that are transcendent and 
subjective. On the other hand,  R / S  analysis assesses 
wave heights data and assures self-affi  nity in advance, 
following which design wave heights are estimated 
using a self-affi  ne fractal model. This provides a new 
approach to predict design wave heights of specifi ed 
return periods.  

 (2) Considering the geographical and seasonal 
eff ects on wave heights, such as typhoons, the extreme 
values recorded in July and August were analyzed and 
compared with annual extreme values. We found that 
the design wave heights during the summer were 
smaller when considering a return period of 100 
years, but the diff erence was less than 1.7%. Thus, 
attention should be paid to long-term observations 
and measurements in July and August in the future, as 
this would be more accurate.  

 (3) When applying the self-affi  ne fractal model to 
estimate wave heights of specifi ed return periods, 
there was only a slight diff erence between results 
based on the short-term data and those based on long-
term data. This further verifi es the stabilities of our 
proposed model.   

 (4) Although fractal theories and  R / S  analysis were 
used, there remain unanswered issue, such as a 
method to minimize unpredictable parts occurring 
because of randomness and errors in observation, and 
whether the mean water level can be taken into 
account when applying  R / S  analysis, in order to 
eliminate uncertainties and subjectivity when using 
traditional methods and prescribing distribution by 
experience. 

 (5) Although the new fractal model is proposed by 
analyzing the oceanic topography, the self-similarity 
and scale-invariance of the measured tide data, it can 
be used to calculate the design water levels with a 
return period of 50 years, 100 years or higher, which 
include design highest water level, design lowest 
water level, check highest water level and check 
lowest water level. 
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