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  Abstract       MicroRNAs (miRNAs) are a group of small, endogenous, single-stranded non-coding RNAs 
that post-transcriptionally regulate gene expression levels. Previous studies have revealed that miRNAs 
play key roles in multiple biological processes, such as growth and development in both animals and plants. 
Computational identifi cation is an effi  cient method for miRNA prediction in organisms with a reference 
genome before high-throughput miRNA sequencing experiments. In this study, we employed an integrated 
strategy combining the homology-based and ab initio approaches to predict miRNAs from the genome 
and transcriptome of large yellow croaker, one of the most commercially important marine fi sh in China 
and East Asia. A total of 418 miRNA molecules, including 287 miRNAs by the homology-based method 
and 131 miRNAs by the ab initio approach, were identifi ed for large yellow croaker. Additionally, 16 053 
target genes were predicted and annotated for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) databases. Meanwhile, we analysed single nucleotide polymorphisms (SNPs) around 
large yellow croaker miRNA and found that the miRNA seed regions were signifi cantly less prone to 
mutations, indicating that the miRNA sequences were under strict natural selection based on their essential 
regulation functions in living cells. Twenty-two SNPs were identifi ed in large yellow croaker miRNA seed 
regions, which dramatically infl uenced the miRNA-gene regulation networks. This is the fi rst reported 
miRNA detection from both the genome and transcriptome using the integrated strategy for large yellow 
croaker species, and the miRNA and SNP analyses in this work provide important resources and a reference 
for subsequent miRNA functional investigations in large yellow croaker. 

  K  eyword : large yellow croaker; miRNAs; integrated computational approach 

 1 INTRODUCTION 

 MicroRNAs are ~22 nucleotides (nt), single-
stranded, endogenous and non-coding RNAs that 
play important roles in many physiological and 
developmental processes (Ambros, 2004; Bartel, 
2004; He and Hannon, 2004). Since the fi rst miRNA 
was discovered in the early 1990s (Lee et al., 1993), 
increasing evidence on multicellular eukaryotes has 
shown that miRNAs regulate basic cellular functions, 
such as proliferation, diff erentiation, and death 
(Hannon, 2002; Hwang and Mendell, 2006; 
Shivdasani, 2006; Lenkala et al., 2014; Yao, 2016), 
and have multipurpose biological functions, including 

development, growth, signalling, diff erentiation, 
protein degradation (Behm-Ansmant et al., 2006), 
stress response, disease development, and acting as a 
signature for cancer (Fleming et al., 2013; Tüfekci et 
al., 2014). miRNAs can negatively mediate gene 
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expression by recognizing completely or partially 
complementary sequences in target genes. Previous 
studies show that miRNA genes are present in the 
introns of coding genes or intergenic regions. A series 
of steps was involved in the biogenesis of miRNAs. 
In the nucleus, miRNA genes are transcribed into 
several hundred nucleotide-long primary miRNAs 
(pri-miRNAs). Pri-miRNAs can liberate pre-miRNA 
(precursor miRNA) hairpin structures, which are then 
exported from the nucleus to the cytoplasm. Next, a 
pre-miRNA can produce a duplex intermediate 
(miRNA:miRNA*) in the cytoplasm. Finally, mature 
miRNAs that usually come from one strand of the 
miRNA:miRNA* duplex combine with Dicer enzyme 
and other associated proteins to form an active RNA-
induced silencing complex (RISC). The RISC can 
repress translation by binding to the 3′UTR of the 
target mRNA (Hannon, 2002; Bartel, 2004; Yang and 
Wang, 2011). 

 As reported in previous studies, there are two 
prevalent methods for miRNA identifi cation, the 
computational and sequencing approaches. Although 
miRNA sequencing provides more complete miRNA 
information, the computational method remains a 
prevalent strategy for miRNA prediction before high-
throughput sequencing experiments are performed, 
especially for organisms with abundant genome and 
transcriptome resources. (Tong et al., 2006; Baev et 
al., 2009; Zhou et al., 2009; Frazier et al., 2010; 
Huang et al., 2010; Patanun et al., 2013; Akter et al., 
2014; Han et al., 2014a, b; Li et al., 2016a). The 
homology-based and ab initio approaches are two 
main computational methods for miRNA 
identifi cation. The homology-based approach takes 
advantage of the high conservation of miRNA among 
species. Although homology-based methods are 
convenient, they can only identify known miRNA 
molecules that have been previously reported. The ab 
initio approach relies on the sequence, genomic 
organization and structure features of miRNA 
precursors, which can detect miRNAs that lack 
obvious homology with those in other organisms. 

 Large yellow croaker ( Larimichthys   crocea ), 
belonging to the order Perciformes, is a widely 
cultured and important economic marine fi sh in China 
(Zheng et al., 2006). Although miRNAs molecules 
were predicted for large yellow croaker (Huang et al., 
2016), a previous study only identifi ed miRNAs from 
the genome sequence. However, scientists have 
suggested that the transcriptome is a more reliable 
resource to identify expressed non-coding RNA (Wan 

et al., 2012; Ou et al., 2013; Xu et al., 2013, 2015; 
Prakash et al., 2016). Therefore, integrated miRNA 
identifi cation by combining homology-based and ab 
initio methods from both the genome and transcriptome 
are needed for systematic analysis of miRNA in large 
yellow croaker.  

 A single nucleotide polymorphism (SNP) is an 
important small genetic variant in the population and 
provides valuable genetic resources for bio-diversity, 
genome evolution, and trait association analyses 
(Shastry, 2009; Nicoloso et al., 2010; Gong et al., 
2012; Jiang et al., 2016; Li et al., 2016b). Many 
studies have revealed that a genomic SNP can aff ect 
many essential biological processes via gene 
expression regulation by miRNA-related interaction 
networks, especially for SNPs that reside in miRNAs 
and the binding region of mRNA. For example, 
rs2910164 of miR-146a plays an important role in 
gastric cancer (Jiang et al., 2016), and genetic variants 
in mir-499 and mir-608 could signifi cantly increase 
the risk of lung cancer (Li et al., 2016b). Interestingly, 
miRNA seed regions, 2–8 nucleotides of the 5′ end, 
bind to complementary sites in the 3′-untranslated 
regions (3′UTRs) of target messenger RNAs 
(mRNAs) and play an important role in regulating 
expression during translation. Therefore, alterations 
in the miRNA seed sequences might dramatically 
infl uence the regulation network of miRNA. Previous 
studies have revealed that polymorphisms are rare in 
mature sequences, especially in seed regions because 
of the conservation of the mature miRNA sequence 
and its seed regions (Lewis et al., 2005). However, 
most studies were performed on human species, and 
little is known about the distribution of SNPs and 
their eff ects around miRNA in large yellow croaker 
and other teleost species. 

 In this study, an integrated computational method 
combining homology-based and ab initio predictions 
was used to identify potential miRNAs in large yellow 
croaker from both genome and transcriptome 
sequences. Therefore, conserved miRNAs and large 
yellow croaker-specifi c miRNAs were identifi ed 
through this comprehensive method. For a better 
understanding of the miRNA regulation function, 
target genes of those miRNAs were predicted and 
annotated with the Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) 
databases. The distribution of SNP markers was 
investigated around miRNA sequences to understand 
how genetic variants infl uence the biological function 
of miRNAs in living cells. The SNP loci residing in 
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miRNA and their mRNA binding sites were analysed 
to reveal their possible biological eff ects. This study 
provides a systematic method of miRNA detection 
and miRNA-related SNP analysis from the genome 
and transcriptome of large yellow croaker using the 
integrated strategy, providing a valuable reference for 
miRNA identifi cation and functional investigation of 
other teleost species. 

 2 MATERIAL AND METHOD 

 2.1 Sequence data and reference miRNAs 

 The latest miRBase release (Release 21), containing 
35 828 miRNA genes from 223 species, was 
downloaded from the miRBase (Kozomara and 
Griffi  ths-Jones, 2014), and a total of 26 332 animal 
miRNAs were retrieved as the reference set of the 
miRNA sequence. To omit redundant or overlapping 
miRNAs, repeated sequences of miRNAs were 
removed and the remaining sequences were used as 
query sequences for homology-based miRNA 
identifi cation. The genome and transcriptome 
sequences of large yellow croaker were downloaded 
from the NCBI database with genebank accession 
number JRPU00000000 (Ao et al., 2015) and project 
accession number PRJNA254539 (Xiao et al., 2015), 
respectively. The transcriptome sequence came from 
various developmental stage, including embryos 
cells, larval, 11 juvenile and 2 adult (one male and 
one female), and diff erent tissues including ocular, 
skin, muscle, gonadal, intestinal, liver, kidney, blood 
gall and air bladder. 

 2.2 The softwares used in the study 

 The alignment tool BLAST version 2.2.31 was 
used for conserved miRNA prediction. Secondary 
structures of pre-miRNAs were evaluated by RNAfold 
version 2.1.9 (http://www.tbi.univie.ac.at/RNA). 
RNAhybrid (http://bibiserv.techfak.uni-bielefeld.de) 
and Miranda (http://www.microrna.org) were used 
for miRNA target gene prediction. 

 2.3 Identifi cation of the conserved miRNAs 

 The workfl ow for identifying conserved miRNAs 
is presented in Fig.1. The genome sequences of large 
yellow croaker were used for the homology search 
against the known unique mature animal miRNA 
sequences. The homology search was performed 
using BLASTN with an E-value of 10 and word-
match size of 7. The following seven criteria were 

also considered to identify the candidate miRNAs 
from the alignment results: 

 1) the number of mismatches and gaps between 
known miRNAs and genomic sequences was less 
than 3; 

 2) the minimal length of the pre-miRNA was set as 
55 nt; 

 3) the pre-miRNA was folded into an appropriate 
stem loop hairpin secondary structure; 

 4) the mature miRNA sequence and its opposite 
miRNA strand had less than 5 nt mis-matches; 

 5) the mature miRNA sequence resided in one arm 
of the hairpin structure; 

 6) the A+U content was between 30 and 70%; 
 7) both minimal folding free energy (MFE) and a 

minimal folding free energy index (MFEI) are 
essential to distinguish between miRNAs and other 
small RNAs. MFE and MFEI were lower than -20 and 
0.8 kcal/mol, respectively. 

Genomic/transcriptomic

sequence of L. crocea 

Candidate 

precursor (1085/189)  

Candidate hairpin  

Predicted miRNAs (273/54)

Identification of real and 

pseudo miRNA precursors

by SVM (642/149) 

Protein database  
Extracted precursor sequences of 

100 nt upstream and 100 downstream

 

 

Potential candidate miRNA 

precursor sequence (26798/9332)

Known animal miRNAs (14990)
 

Blast

Mismatch≤3

Blastx  

RNAfold  

Total miRNAs (287)

Remove redundant miRNAs

 Fig.1 miRNA prediction pipeline according to homology 
 We put result of each steps into brackets, if there are two numbers in a same 
bracket, then the fi rst one indicate the result from genome sequence and 
second one from transcriptome sequence. 
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 To reduce the false positive rate for miRNA 
identifi cation, the pre-miRNA sequences were blasted 
against the protein database with BLASTX to remove 
the coding sequence. The word match size between 
candidate pre-miRNA and protein sequences was 
kept at 7. For a more accurate result, the E-values of 
all of the alignment were collected to determine the 
best E-value using ROC analysis. A Support Vector 

Machine (SVM), exhibiting excellent pre-miRNA 
classifi cation in previous studies for other species (Ng 
and Mishra 2007; Batuwita and Palade 2009; Ding et 
al., 2010), was used to scan the pre-miRNA sequences 
to distinguish true pre-miRNAs from false ones. 
Thirty-six pre-miRNA sequence features (see 
Supplementary Table 1 for detailed information) of 
328  Danio   rerio  pre-miRNAs from miRBase and 350 
random pre-miRNA sequences were used to train the 
SVM classifi cation. The resultant training model was 
applied to identify pre-miRNA in the following study. 
In addition to the genome sequences, transcriptome 
sequences were also used to detect pre-miRNA 
sequences with the above identical method. 

 2.4 Prodiction of novel miRNAs using the ab initio 
approach 

 The overview workfl ow for detecting novel 
miRNAs is presented in Fig.2. Briefl y, all miRNAs, 
including the predicted miRNAs from the homology-
based method, were fi rst aligned to the large yellow 
croaker genome using BLASTN to locate their 
position with a word match size of 7 and an E-value 
cut-off  of 2. Second, the miRNA cluster was defi ned 
with at least 3 miRNAs in a sequence window of 2 kb. 
To predict possible miRNA sequences in the range of 
the miRNA cluster, 80 and 40 bp were used as the pre-
miRNA and step length, respectively. Pre-miRNA 
sequences conforming to the above seven criteria 
were taken to predict potential miRNA molecules. 

 2.5 GO and KEGG pathway annotation for 
putative miRNA target genes 

 3′ UTR sequences longer than 20 bp were extracted 
using a python script according to the gene annotation 
and used for target gene prediction. To reduce false 

Predicted 

miRNAs (287)  

GenomeKnown miRNAs

Previous report 

miRNAs (112)  

miRNA’s position in genome

miRNA clusters

Potential precursors (4492)

Screen clusters

AU, GC, MFE et al. 

traits filter 

Candidate precursors (1323)

Precursors after SVM (159)

SVM  

Precursors after BLASTX (152) 

Remove coding 

sequence by BLASTX 

Structure  filter 

Predicted miRNAs (131)

 Fig.2 miRNA prediction pipeline using the ab initio method 
 Note that the number in brackets means the result number of this step.  

 Table 1 KEGG pathway enrichment 

 Pathway  Target genes with pathway 
annotation (6 307) 

 All genes with pathway 
annotation (9 938)   P  value  Pathway ID 

 Melanogenesis  138 (2.19%)  181 (1.82%)  0.000 142  ko04916 

 Axon guidance  198 (3.14%)  271 (2.73%)  0.000 436  ko04360 

 Synaptic vesicle cycle  83 (1.32%)  106 (1.07%)  0.000 696  ko04721 

 Dopaminergic synapse  182 (2.89%)  251 (2.53%)  0.001 340  ko04728 

 Glutamatergic synapse  169 (2.68%)  233 (2.34%)  0.001 916  ko04724 

 Wnt signalling pathway  169 (2.68%)  233 (2.34%)  0.004 948  ko04310 

 Circadian entrainment  154 (2.44%)  214 (2.15%)  0.007 855  ko04713 

 Long-term depression  87 (1.38%)  117 (1.18%)  0.009 712  ko04730 

 Endocrine and other factor-regulated calcium reabsorption  68 (1.08%)  90 (0.91%)  0.009 721  Ko4961 

Only the top 9 enrichment pathways, with  P <0.01, are displayed.



1711No.5 FANG et al.: Identifi cation of microRNAs in    L .  crocea 

positives, we combined the results of the prevalent 
miRNA target prediction tools of RNAhybrid and 
Miranda. The default score threshold and energy cut-
off  (score≥165 and energy≤-23) were used in miRanda 
to predict the miRNA target. The p value and E-value 
( P =0.1 and  e =-23) were applied in RNAhybrid. 

 The Gene Ontology (GO) and Kyoto Encyclopedia 
of Genes and Genomes (KEGG) databases were used 
for the functional annotation of miRNA target genes. 
First, the miRNA targets genes were annotated by 
BLASTX against the NR database. Second, the best 
hit results by NR blast were used for GO and KEGG 
annotation with default settings in Blast2GO. We also 
used KAAS (KEGG Automatic Annotation Server) 
for KEGG annotation, and the results were combined 
with the output from Blast2GO. 

 2.6 Identifi cation of miRNA-related SNP 

 Whole-genome resequencing data published in 
previous studies were used to call the SNP loci for 
large yellow croaker (Ao et al., 2015). The resulting 
SNP information was employed to analyse the SNP 
distribution around miRNA molecules. To investigate 
the characterization of the SNP distribution around 
miRNA, we estimated the density of SNPs in six 
regions (Gong et al., 2012), including miRNAs, pre-
miRNAs, upstream and downstream 1 000 bp of pre-
miRNA, and pre-miRNA upstream and downstream 
fl anking regions (Fig.3). We also randomly selected 
regions of 500 bp from the reference genome as the 
control region. The SNP density was defi ned as the 
number of SNPs per 1 000 bp. 

 2.7 The analysis of SNP-induced miRNA target 
gain and loss 

 The seed regions of miRNAs were more conserved 
than other regions of mature miRNAs because the 
SNP loci in miRNA target regions may infl uence the 
miRNA regulation cascades. To investigate how 
SNPs infl uence the miRNA function, miRNAs whose 
target regions contain SNP loci were considered in 
this study. As described above, two miRNA target 
tools, Miranda and RNAhybrid, were employed to 
predict the target genes for the wild-type and SNP-
type miRNAs. For easy analysis of the eff ect induced 
by SNP in miRNAs, we defi ned the following four 
signs: WR (target genes of wild-type miRNAs 
processed by RNAhybrid), SR (target genes of SNP-
type miRNAs processed by RNAhybrid), WM (target 
genes of wild-type miRNAs processed by Miranda), 

and SM (target genes of SNP-type miRNAs processed 
by Miranda). If one target exists in both WR and WM, 
but not in SM or SR, we defi ned this as target loss. If 
one target exists in both SM and SR, but not in WR or 
WM, we defi ned this as target gain. If one target exists 
in all four signs, we defi ned this as the target remain. 
All target genes for wild-type and SNP-type miRNA 
were classifi ed into three groups, gained targets, lost 
targets and remained targets, for each miRNA.  

 3 RESULT AND DISCUSSION 

 3.1 Determination of the best E-value parameter 
for BLASTX 

 According to previous studies, the sequence 
features of the miRNA precursor, including the 
conformation of the stem loop secondary structure, 
low MFE, relative narrow range of the A+U content 
and MFEI, could be used to distinguish true miRNA 
molecules from other potential sequences; however, it 
is still necessary to eliminate coding sequences by 
BLASTX from the miRNA precursor sequences 
against the known protein database. In previous 
studies, an arbitrary E-value was chosen during 
miRNA classifi cation. In our work, we attempted to 
estimate the optimized E-value for miRNA 
identifi cation from receiver operating characteristic 
(ROC) analysis. To this end, we use 599 medaka 
miRNAs from NGS (Li et al., 2010) as the positive 
dataset and 436 predicted miRNA from medaka CDS 
sequences as the negative dataset. Both the positive 
dataset and negative datasets were evaluated BLASTX 
against the NR database. We combined two E-values 
of the BLASTX results as the input dataset of the 
ROC analysis. As shown in Fig.4, the optimized 
E-value was -5.611, leading to a specifi city of 0.609 
and sensitivity of 0.733. 

 3.2 Identifi cation of miRNAs in large yellow 
croaker   according to a homology-based search 

 Most mature miRNAs are evolutionarily conserved 
among species. Animal miRNAs, including 1 275 
species and 26 332 miRNAs, were selected from the 
latest miRBase. Large yellow croaker genome and 
transcriptome sequences were scanned to identify 
conservative miRNA genes using the prediction 
procedure, as demonstrated in Fig.1. The whole 
miRNA detection processes included two steps. First, 
potentially conserved miRNAs were searched from 
genome and transcriptome sequences using BLASTN 
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and preliminary fi ltration, resulting in 1 085 and 189 
homologous miRNA from large yellow croaker 
genome and transcriptome sequences, respectively. 
Second, protein-coding and redundant miRNA were 
omitted from the potential miRNAs to reduce false 
positive results. After the fi ltration and SVM 
classifi cation in the second step, the total numbers of 
potential miRNAs from the genome and transcriptome 
were reduced to 273 and 54 miRNAs, respectively. 
Redundant miRNAs were removed from total 
predicted miRNAs before we compared total 
predicted miRNAs with previous report miRNAs in 
large yellow croaker by using BLASTN, and 287 
unique miRNAs were gained. The 287 identifi ed 
miRNA sequences (Supplementary Table 2) covered 
103 previously reported miRNAs (Qi et al., 2014; 
Huang et al., 2016) and 184 newly predicted miRNAs. 
According to the miRNA classifi cation, all of the 
predicted miRNAs of large yellow croaker were 
grouped into 100 families (Supplementary Table 2). 
There were 184 newly miRNAs when compared with 
previous studies’ results and 3 reasons can account for 
this. The fi rst one is that the source data was diff erent, 
in our study, we used the whole genome sequences 
and comprehensive transcriptome sequences while in 
previous research genome sequences or specifi c 
condition transcriptome sequences were used. The 
second one is that parameters may diff erent for same 
software in diff erent reports, for example, we use the 
ROC to fi nd the best E-value for BLASTX. The last 
one which is the most important one is that diff erent 
features were used to train SVM model when 
compared with previous researches. 

 3.3 Novel miRNA detection in the large yellow 
croaker genome using the ab initio approach 

 Previous reports revealed that miRNA genes were 
frequently grouped as clusters in chromosomes. For 
example, miRNA clusters containing more than three 

miRNA genes were found in  D .  melanogaster  (Aravin 
et al., 2003); miRNA clusters containing let-7a-1 and 
let-7f-1 were identifi ed in the human genome (Lagos-
Quintana et al., 2001). Therefore, it is possible to 
discover novel miRNAs in the large yellow croaker 
genome around known miRNA clusters. Taking the 
miRNA predicted in this study and 112 miRNA genes 
previously reported (Qi et al., 2014) as known 
miRNA, 391 miRNA genes were left after removing 
redundant miRNA. To determine the miRNA gene 
locations, we mapped all known miRNAs in the large 
yellow croaker genome, and 384 (98.2%) of all known 
miRNA genes were successfully mapped to the best 
unique location. 

 To the best of our knowledge, the strict defi nition of 
a miRNA cluster is still lacking. Altuvia et al. utilized 
a fi xed length with 3 kb to defi ne a miRNA cluster 
(Altuvia et al., 2005), while other researchers adopted 
a more fl exible length. For example, Chan et al. 
selected a range from 1 kb to 50 kb for a miRNA 
cluster (Chan et al., 2012). In this study, we chose 2 kb 
as the length of a miRNA cluster because a longer 
length may overestimate miRNA clusters in the large 
yellow croaker genome. A miRNA cluster was defi ned 
as the genomic region including at least two miRNA 
molecules. With the method described in the Methods 
section, 131 novel miRNAs were de novo predicted 
and are listed in Supplementary Table 3. 

 We combined homology results and ab initio 
results together and 418 miRNAs were gained. The 

Pre-miRNA 

miRNA 
Pre-miRNA flank 

Pre-miRNA upstream 1 k 

 Fig.3 Defi nition of six regions (miRNA region, pre-miRNA 
region, pre-miRNA upstream and downstream fl ank 
regions, pre-miRNA upstream and downstream 1k 
regions) 
 Upstream or downstream pre-miRNA fl ank represents a window 
(equal to the average size of pre-miRNA). 
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 Fig.4 ROC result for the optimal E-value 
 This ROC result using the pROC R package, with an AUC closer to 1, 
provided result accuracy. -5.611 is the E-value threshold. 
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number is very similar with previous report in  Equus  
 caballus  (Zhou et al., 2009) with 407 miRNAs. Our 
results are more comprehensive when compared with 
the results in  Equus   caballu , as the fact we used both 
genome and transcriptome sequences as the input 
sequence. In the next future, new data on other species 
and the comparison with data obtained in closely 
related species will probably help to estimate if we 
can expect to fi nd more miRNAs in the large yellow 
croaker. Besides, limits in our study were also exist 
and pri-miRNAs which only contain one miRNA 
precursor were considered while there are some pri-
miRNAs which can produce more than one miRNA 
precursor (Bartel, 2004).  

 Predict miRNAs by this using computational 
method is effi  cient and low-cost, some work still need 
to be done in the future. In order to exam this 
workfl ow’s accuracy, QPCR validations would be 
exerted. Furthermore, small RNA sequencing will be 
necessary in the future to confi rm the biological 
signifi cance of these predicted miRNAs as the fact 
that cost of sequencing technology is becoming 
cheaper and cheaper. 

 3.4 Features of the predicted miRNA genes 

 We calculated the features of the 418 predicted 
miRNAs and their precursor sequences from our 
research. In our study, the length of pre-miRNA 
varied from 56 to 187 nt, with an average of 90.96 nt, 
which was consistent with that of animal hairpin 

sequences downloaded from miRBase. The length of 
mature miRNAs ranged from 16 to 27 nt, with an 
average of 21.74 nt, showing a comparable length 
distribution with other animal mature miRNAs in the 
miRBase database (Supplementary Fig.1).  

 We analysed the base composition at each position 
in mature miRNAs; the statistical results are shown in 
Fig.5a. The nucleotide distributions at each position 
of large yellow croaker miRNA were in accordance 
with other animals (Fig.5b). The base composition 
confi rmed previous results that cytosine (C) is used 
less often than the other the three nucleotides at 
position 19, while adenine (A) is found at the smallest 
proportion at position 23. 

 miRNA precursors as well as other RNAs, 
mRNAs, tRNAs and rRNAs could fold into hairpin 
secondary structures. Therefore, the minimal free 
energy (MFE) and minimal free energy index 
(MFEI) are two important indicators to distinguish 
miRNAs from other small RNAs (Ng and Mishra, 
2007). The MF E-value of the predicted pre-miRNAs 
ranges from -112.3 to -16.2 kcal/mol, with an 
average of -39.97 kcal/mol, and the average of MFEI 
was found to be 0.87 kcal/mol. The G+C content is 
another feature of miRNA precursors (Zhou et al., 
2009) because a higher G+C content in miRNA 
precursors could infl uence the stability of the 
secondary structures. The G+C content of miRNA 
precursors varied from 30.36 to 68.97 with an 
average of 43.75. 
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 Fig.5 Base composition at each position in mature miRNAs 
 a. base composition at each position in large yellow croaker mature miRNAs; b. base composition at each position in other animal mature miRNAs. 



Vol. 361714 J. OCEANOL. LIMNOL., 36(5), 2018

 3.5 Potential miRNA target gene prediction and 
functional annotation 

 miRNAs regulate gene expression by binding to 
the 3-UTR of target genes in various organisms. 
miRNA target gene identifi cation is an important to 
better understand the role of miRNAs in cellular 
functions and gene regulation networks (Lai et al., 
2016); however, false positives remain one of the 
most challenging issues during miRNA target 
prediction. We combined the 418 and 112 miRNAs, 
for a total of 530 miRNAs, from this and a previous 
study for further analysis. In this work, we predicted 
the potential targets of 530 miRNA genes by using 
two prevalent tools, miRanda and RNAhybrid. As a 
result, 16 142 and 23 510 miRNA target genes were 
predicted from miRanda and RNAhybrid, respectively. 
To reduce false positives, only target genes predicted 
by the two tools were used for the subsequent analysis. 
As a result, a total of 16 053 targets for 507 miRNA 
genes were predicted, with an average of 31 target 

genes for each miRNA. We only found that 23 
miRNAs were not assigned to target genes in both 
tools, which might be attributed to the uncompleted 
reference genome and limitation of the target gene 
prediction tools. 

 The annotation of Gene Ontology (GO) uncovered 
the putative molecule functions of the target genes as 
well as the diverse biological processes that are 
regulated by related miRNAs. The 16 053 potential 
target genes were used for functional categorization 
and pathway analysis. The BLAST2GO suite was 
used to annotate the miRNA target genes by GO 
databases into three independent categories, cellular 
components, molecular functions, and biological 
processes. As a result, 14 609 target genes were 
successfully associated with GO terms. Furthermore, 
13 284, 13 152 and 13 125 target genes were assigned 
to cellular components, biological processes and 
molecular functions, respectively. A more detailed 
annotation for each category is represented in Fig.6. 
In the biological process category, the cellular 
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 Fig.6 miRNA target GO annotation 
 miRNA targets annotated by Gene Ontology (GO) terms, which belong to three main categories, biological processes, cellular components and molecular functions. 
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processes (GO:0009987, 11357) and single-organism 
processes (GO:0044699, 10726) were the two most 
enriched terms. For the molecular function category, 
the majority consisted of binding (GO:0005488, 
11052) and catalytic activity (GO:0003824, 5589). In 
the cellular component category, many miRNA target 
genes were involved in the cell part (GO:0044464, 
11864), which was followed by cells (GO:0005623, 
11915).  

 With the help of KEGG annotation, we can 
elucidate the functions of putative target genes related 
to primary metabolism and secondary metabolite 
biosynthetic pathways. KAAS (KEGG Automatic 
Annotation Server) was used for pathway annotation 
of genes with a BLAST output (see Methods for 
details). Then, 6 308 target genes were assigned to 
KO terms and classifi ed into 341 pathways after 
mapping the target genes to the reference pathways. 
All pathways were divided into six categories 
according to the molecular interaction and reaction 
networks, including Metabolism, Genetic Information 
Processing, Environmental Information Processing, 
Cellular Processes, Organismal Systems and Human 
Diseases (Supplementary Fig.2). With the whole 
genome genes as the background, we employed 
KEGG annotations for pathway enrichment. Those 
pathways represented the biological pathway 
infl uenced most by miRNA regulations (Table 1). The 
enriched pathways included many biological 
pathways that have been reported in previous studies, 
such as melanogenesis (Felicetti et al., 2008), 
dopaminergic synapse (Fiore et al., 2008) and the wnt 
signalling pathway (Gokhale et al., 2010).  

 3.6 SNP distribution around miRNA in the large 
yellow croaker genome 

 Animal miRNA genes exhibited high conservation 
among organisms; therefore, we speculated that 
mutations around miRNA re suppressed by natural 
selection. The SNP distributions around miRNA 
molecules were previously depicted in human and 
rice genomes (Saunders et al., 2007; Zhu et al., 2012; 
Liu et al., 2013); however, to the best of our 
knowledge, there is no research on SNPs around 
miRNA genes of large yellow croaker. To compare 
the SNP distribution among diverse regions in the 
large yellow croaker genome, SNP densities of six 
regions were calculated, including the miRNA, pre-
miRNA (miRNA precursor) and pre-miRNA adjacent 
upstream and downstream 1 000 bp regions; pre-
miRNA fl anking regions and whole-genome random 

regions (Fig.7). As we expected, the pre-miRNA 
fl anking regions had the highest SNP density (~31.21 
per kb), while the mature miRNA regions had the 
lowest SNP density (~10.41 per kb). The results were 
consistent with a previous investigation in the human 
genome, which also confi rmed the reliability of 
miRNA detection in this study. 

 3.7 Target alteration caused by SNPs in miRNA 
seed regions 

 Previous investigations of polymorphisms in 
miRNA seed regions showed that miRNA SNPs 
might suppress gene expression by improving the 
binding affi  nity, while other mutations could lead to 
novel gene expression regulation. Alterations of the 
gene regulation cascade by polymorphisms in seed 
regions of miRNAs may signifi cantly infl uence 
normal biological pathways in living cells; therefore, 
studies on SNPs in miRNA provided an important 
approach to probe the function of miRNAs in gene 
regulation pathways. For example, the T allele in 
miR-196a2 (rs11614913) could decrease the risk of 
breast cancer. By contrast, miR-499 (rs3746444) 
AG/GG could increase the risk of breast cancer (Hu et 

0

10

20

30

R
an

do
m

U
p_

1 
k

U
p_

fla
nk

Pre
cu

rs
or

M
irn

a

D
ow

n_
fla

nk

D
ow

n_
1 

k

Region

S
n
p
 n

u
m

b
er

 p
er

 1
 k

b
p

Random
Up_1 k
Up_flank
Precursor
Mirna
Down_flank
Down_1 k

 Fig.7 Six regions, including miRNA, pre-miRNA, pre-
miRNA upstream 1 k, pre-miRNA downstream 
1 k, pre-miRNA upstream fl ank, and pre-miRNA 
downstream fl ank, and the left region is a random 
region 
 The height of the pillar represents the average SNP number in this 
region, and the error bars represent standard error. 



Vol. 361716 J. OCEANOL. LIMNOL., 36(5), 2018

al., 2014). However, the biological infl uence analysis 
of polymorphisms in the seed regions of miRNAs has 
barely been reported for teleost. 

 miRNA target gene prediction mainly relied on 
miRNA seed region (nucleotides 2–8) 
complementation; therefore, SNPs in mature miRNA, 
especially the seed regions, may have a profound 
infl uence on the miRNA function and biogenesis. In 
this study, 22 SNPs were identifi ed in the seed regions 
of 19 miRNAs. All miRNAs only had one SNP in the 
seed regions, except miR-7154-3p, miR-2025-5p and 
Pcr-mir-scaff old1370_34620. RNAhybrid and 
miRanda were employed to predict target genes for 
all mutated and wild-type miRNAs, except miR-
449c-3p, which was too short for target gene 
prediction after mutation. All target genes for wild-
type and SNP-type miRNA were classifi ed into three 
groups for each miRNA, gained targets, lost targets 
and remaining targets. As shown in Fig.8, we found 
that most of site mutations in putative miRNAs could 
greatly increase the target gene number. By comparing 
the remaining and gained target gene numbers for 
each miRNA, we found that nucleotide alterations of 
the miRNA seed regions can signifi cantly enhance 
complementation with their target gene 

(Supplementary Table 4,  t -test  P -value=0.01). 
Meanwhile, the number of gained target genes was 
obviously higher than that of the remaining and lost 
targets, which was similar to the investigation in the 
rice genome, indicating that mutations in miRNA 
seed regions might dramatically infl uence the miRNA 
regulation pathway.  

 miRNA-related SNPs could impair or enhance 
miRNA processing and alter the sites of processing. 
Many scientists have studied miRNA-related SNPs 
especially in human diseases. For example, Liu et al. 
(2012) established a miRNA-related SNP database 
for human species; Hu et al. (2016) have found a SNP 
site associate with plasma triglycerides levels and 
coronary heart disease in miR-4217 target gene. 
However most of these researches are related about 
SNPs in miRNAs’ target 3′UTR sequences or pre-
miRNAs or pre-miRNAs. Studies associated with 
SNPs which located in miRNA seed regions are very 
rare. So it’s hard to fi nd a proper previous research to 
compare with our results. Although miR-4217 in Hu’s 
fi ndings play an important role in human heart disease, 
the SNPs’ location is not the seed region. But our 
results can provide a potential research direction in 
the near future for other species. 
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 4 CONCLUSION  

 Most computational investigations for miRNA 
identifi cation rely on the sequence conservation of 
mature miRNA among species. However, the 
homology-based approach can only detect known 
miRNA molecules. In this study, we adopted an 
integrated strategy combining the homology-based 
and ab initio methods, utilizing the characterization of 
the miRNA cluster to predict miRNAs from the large 
yellow croaker genome and transcriptome. A total of 
418 miRNAs, including 287 miRNAs from homology 
searching and 131 miRNAs from the ab initio 
approach, were identifi ed. Then, 16 053 putative 
target genes were predicted for the identifi ed miRNAs, 
which were further annotated by GO term and KEGG 
pathway analyses. The SNP distribution around 
miRNAs revealed that miRNA mutations were 
suppressed. Then, 22 SNP loci were identifi ed in large 
yellow croaker miRNA seed regions, and we 
demonstrated that these mutations could dramatically 
infl uence miRNA-gene regulation cascades. This 
study not only provides abundant miRNA resources 
for large yellow croaker for subsequent investigations 
as well as off ers a reference strategy for miRNA 
detection and analysis for other non-model organisms. 

 5 DATA AVAILABILITY STATEMENT 

 The genome sequence data and transcriptome 
sequencing data that support the fi ndings of this study 
are available in NCBI (accession No. JRPU00000000) 
with the identifi er https://doi.org/10.1371/journal.
pgen.1005118 and NCBI (SRA accession No. of 
SRR1509885) with the identifi er https://doi.org/ 
10.1371/journal.pone.0124432.  
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