Cite this paper:
FANG Lujing, XIAO Shijun, HAN Zhaofang, WANG Zhiyong. MicroRNAs identification and bioinformatics analysis in large yellow croaker Larimichthys crocea using an integrated comparative and ab initio approach[J]. HaiyangYuHuZhao, 2018, 36(5): 1707-1719

MicroRNAs identification and bioinformatics analysis in large yellow croaker Larimichthys crocea using an integrated comparative and ab initio approach

FANG Lujing, XIAO Shijun, HAN Zhaofang, WANG Zhiyong
Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture;Fisheries College, Jimei University, Xiamen 361201, China
Abstract:
MicroRNAs (miRNAs) are a group of small, endogenous, single-stranded non-coding RNAs that post-transcriptionally regulate gene expression levels. Previous studies have revealed that miRNAs play key roles in multiple biological processes, such as growth and development in both animals and plants. Computational identification is an efficient method for miRNA prediction in organisms with a reference genome before high-throughput miRNA sequencing experiments. In this study, we employed an integrated strategy combining the homology-based and ab initio approaches to predict miRNAs from the genome and transcriptome of large yellow croaker, one of the most commercially important marine fish in China and East Asia. A total of 418 miRNA molecules, including 287 miRNAs by the homology-based method and 131 miRNAs by the ab initio approach, were identified for large yellow croaker. Additionally, 16 053 target genes were predicted and annotated for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Meanwhile, we analysed single nucleotide polymorphisms (SNPs) around large yellow croaker miRNA and found that the miRNA seed regions were significantly less prone to mutations, indicating that the miRNA sequences were under strict natural selection based on their essential regulation functions in living cells. Twenty-two SNPs were identified in large yellow croaker miRNA seed regions, which dramatically influenced the miRNA-gene regulation networks. This is the first reported miRNA detection from both the genome and transcriptome using the integrated strategy for large yellow croaker species, and the miRNA and SNP analyses in this work provide important resources and a reference for subsequent miRNA functional investigations in large yellow croaker.
Key words:    large yellow croaker|miRNAs|integrated computational approach   
Received: 2017-02-28   Revised:
Tools
PDF (929 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by FANG Lujing
Articles by XIAO Shijun
Articles by HAN Zhaofang
Articles by WANG Zhiyong
References:
Akter A, Islam M M, Mondal S I, Mahmud Z, Jewel N A, Ferdous S, Amin M R, Rahman M M. 2014. Computational identification of miRNA and targets from expressed sequence tags of coffee (Coffea arabica). Saudi Journal of Biological Sciences, 21(1):3-12, https://doi.org/10.1016/j.sjbs.2013.04.007.
Altuvia Y, Landgraf P, Lithwick G, Elefant N, Pfeffer S, Aravin A, Brownstein M J, Tuschl T, Margalit H. 2005. Clustering and conservation patterns of human microRNAs. Nucleic Acids Research, 33(8):2 697-2 706, https://doi.org/10.1093/nar/gki567.
Ambros V. 2004. The functions of animal microRNAs. Nature, 431(7006):350-355, https://doi.org/10.1038/nature02871.
Ao J Q, Mu Y N, Xiang L X, Fan D D, Feng M J, Zhang S C, Shi Q, Zhu L Y, Li T, Ding Y, Nie L, Li Q H, Dong W R, Jiang L, Sun B, Zhang X H, Li M Y, Zhang H Q, Xie S B, Zhu Y B, Jiang X T, Wang X H, Mu P F, Chen W, Yue Z, Wang Z, Wang J, Shao J Z, Chen X H. 2015. Genome sequencing of the perciform fish Larimichthys crocea provides insights into molecular and genetic mechanisms of stress adaptation. PLoS Genetics, 11(4):e1005118, https://doi.org/10.1371/journal.pgen.1005118.
Aravin A A, Lagos-Quintana M, Yalcin A, Zavolan M, Marks D, Snyder B, Gaasterland T, Meyer J, Tuschl T. 2003. The small RNA profile during Drosophila melanogaster development. Developmental Cell, 5(2):337-350, https://doi.org/10.1016/s1534-5807(03)00228-4.
Baev V, Daskalova E, Minkov I. 2009. Computational identification of novel microRNA homologs in the chimpanzee genome. Computational Biology and Chemistry, 33(1):62-70, https://doi.org/10.1016/j.compbiolchem.2008.07.024.
Bartel D P. 2004. MicroRNAs:genomics, biogenesis, mechanism, and function. Cell, 116(2):281-297, https://doi.org/10.1016/S0092-8674(04)00045-5.
Batuwita R, Palade V. 2009. microPred:effective classification of pre-miRNAs for human miRNA gene prediction. Bioinformatics, 25(8):989-995, https://dx.doi.org/10.1093/bioinformatics/btp107.
Behm-Ansmant I, Rehwinkel J, Izaurralde E. 2006. MicroRNAs silence gene expression by repressing protein expression and/or by promoting mRNA decay. Cold Spring Harbor Symposia on Quantitative Biology, 71:523-530, https://dx.doi.org/10.1101/sqb.2006.71.013.
Chan W C, Ho M R, Li S C, Tsai K W, Lai C H, Hsu C N, Lin W C. 2012. MetaMirClust:discovery of miRNA cluster patterns using a data-mining approach. Genomics, 100(3):141-148, https://doi.org/10.1016/j.ygeno.2012.06.007.
Ding J D, Zhou S G, Guan J H. 2010. MiRenSVM:towards better prediction of microRNA precursors using an ensemble SVM classifier with multi-loop features. BMC Bioinformatics, 11(S11):S11, https://doi.org/10.1186/1471-2105-11-S11-S11.
Felicetti F, Errico M C, Segnalini P, Mattia G, Carè A. 2008. MicroRNA-221 and -222 pathway controls melanoma progression. Expert Review of Anticancer Therapy, 8(11):1 759-1 765, https://doi.org/10.1586/14737140.8.11.1759.
Fiore R, Siegel G, Schratt G. 2008. MicroRNA function in neuronal development, plasticity and disease. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms, 1779(8):471-478, https://doi.org/10.1016/j.bbagrm.2007.12.006.
Fleming J L, Gable D L, Samadzadeh-Tarighat S, Cheng L K, Yu L B, Gillespie J L, Toland A E. 2013. Differential expression of miR-1, a putative tumor suppressing microRNA, in cancer resistant and cancer susceptible mice. PeerJ, 1:e68, https://doi.org/10.7717/peerj.68.
Frazier T P, Xie F L, Freistaedter A, Burklew C E, Zhang B H.2010. Identification and characterization of microRNAs and their target genes in tobacco (Nicotiana tabacum).Planta, 232(6):1 289-1 308, https://doi.org/10.1007/s00425-010-1255-1.
Gokhale A, Kunder R, Goel A, Sarin R, Moiyadi A, Shenoy A, Mamidipally C, Noronha S, Kannan S, Shirsat N V. 2010. Distinctive microRNA signature of medulloblastomas associated with the WNT signaling pathway. Journal of Cancer Research and Therapeutics, 6(4):521, https://doi.org/10.4103/0973-1482.77072.
Gong J, Tong Y, Zhang H M, Wang K, Hu T, Shan G, Sun J, Guo A Y. 2012. Genome-wide identification of SNPs in microRNA genes and the SNP effects on microRNA target binding and biogenesis. Human Mutation, 33(1):254-263, https://doi.org/10.1002/humu.21641.
Han J, Li A Y, Liu H, Wen X C, Zhao M Z, Korir N B, Korir N K, Wang C, Fang J G. 2014a. Computational identification of microRNAs in the strawberry (Fragaria x ananassa) genome sequence and validation of their precise sequences by miR-RACE. Gene, 536(1):151-162, https://doi.org/10.1016/j.gene.2013.11.023.
Han J, Xie H, Kong M L, Sun Q P, Li R Z, Pan J B. 2014b. Computational identification of miRNAs and their targets in Phaseolus vulgaris. Genetics and Molecular Research, 13(1):310-322, https://doi.org/10.4238/2014.January.17.16.
Hannon G J. 2002. RNA interference. Nature, 418(6894):244-251, https://doi.org/10.1038/418244a.
He L, Hannon G J. 2004. MicroRNAs:small RNAs with a big role in gene regulation. Nature Reviews Genetics, 5(7):522-531, https://doi.org/10.1038/nrg1379.
Hu S L, Cui G L, Huang J, Jiang J G, Wang D W. 2016. An APOC3 3'UTR variant associated with plasma triglycerides levels and coronary heart disease by creating a functional miR-4271 binding site. Scientific Reports, 6:32 700, https://doi.org/10.1038/srep32700.
Hu Y, Yu C Y, Wang J L, Guan J, Chen H Y, Fang J Y. 2014.MicroRNA sequence polymorphisms and the risk of different types of cancer. Scientific Reports, 4:3 648, https://doi.org/10.1038/srep03648.
Huang Y, Cheng J H, Luo F N, Pan H, Sun X J, Diao L Y, Qin X J. 2016. Genome-wide identification and characterization of microRNA genes and their targets in large yellow croaker (Larimichthys crocea). Gene, 576(1):261-267, https://doi.org/10.1016/j.gene.2015.10.044.
Huang Y, Zou Q, Tang S M, Wang L G, Shen X J. 2010.Computational identification and characteristics of novel microRNAs from the silkworm (Bombyx mori L.). Molecular Biology Reports, 37(7):3 171-3 176, https://doi.org/10.1007/s11033-009-9897-4.
Hwang H W, Mendell J T. 2006. MicroRNAs in cell proliferation, cell death, and tumorigenesis. British Journal of Cancer, 94(6):776-780, https://doi.org/10.1038/sj.bjc.6603023.
Jiang J, Jia Z F, Cao D H, Wu Y H, Sun Z W, Cao X Y. 2016.Association of the miR-146a rs2910164 polymorphism with gastric cancer susceptibility and prognosis. Future Oncology, 12(19):2 215-2 226, https://doi.org/10.2217/fon-2016-0224.
Kozomara A, Griffiths-Jones S. 2014. miRBase:annotating high confidence microRNAs using deep sequencing data.Nucleic Acids Research, 42(D1):D68-D73, https://doi.org/10.1093/nar/gkt1181.
Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T. 2001.Identification of novel genes coding for small expressed RNAs. Science, 294(5543):853-858, https://doi.org/10.1126/science.1064921.
Lai X, Wolkenhauer O, Vera J. 2016. Understanding microRNA-mediated gene regulatory networks through mathematical modelling. Nucleic Acids Research, 44(13):6 019-6 035, https://doi.org/10.1093/nar/gkw550.
Lee R C, Feinbaum R L, Ambros V. 1993. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 75(5):843-854, https://doi.org/10.1016/0092-8674(93)90529-Y.
Lenkala D, LaCroix B, Gamazon E R, Geeleher P, Im H K, Huang R S. 2014. The impact of microRNA expression on cellular proliferation. Human Genetics, 133(7):931-938, https://doi.org/10.1007/s00439-014-1434-4.
Lewis B P, Burge C B, Bartel D P. 2005. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell, 120(1):15-20, https://doi.org/10.1016/j.cell.2004.12.035.
Li D D, Liu Z C, Gao L, Wang L F, Gao M J, Jiao Z J, Qiao H L, Yang J W, Chen M, Yao L G, Liu R Y, Kan Y C. 2016a.Genome-Wide Identification and Characterization of microRNAs in Developing Grains of Zea mays L. PLoS One, 11(4):e0153168, https://doi.org/10.1371/journal.pone.0153168.
Li D R, Zhu G Y, Di H Q, Li H, Liu X Y, Zhao M, Zhang Z H, Yang Y H. 2016b. Associations between genetic variants located in mature microRNAs and risk of lung cancer.Oncotarget, 7(27):41 715-41 724, https://doi.org/10.18632/oncotarget.9566.
Li S C, Chan W C, Ho M R, Tsai K W, Hu L Y, Lai C H, Hsu C N, Hwang P P, Lin W C. 2010. Discovery and characterization of medaka miRNA genes by next generation sequencing platform. BMC Genomics, 11(S4):S8, https://doi.org/10.1186/1471-2164-11-S4-S8.
Liu C X, Zhang F Q, Li T T, Lu M, Wang L F, Yue W H, Zhang D. 2012. MirSNP, a database of polymorphisms altering miRNA target sites, identifies miRNA-related SNPs in GWAS SNPs and eQTLs. BMC Genomics, 13:661, https://doi.org/10.1186/1471-2164-13-661.
Liu Q P, Wang H, Zhu L Y, Hu H C, Sun Y Q. 2013. Genomewide identification and analysis of miRNA-related single nucleotide polymorphisms (SNPs) in rice. Rice, 6:10, https://doi.org/10.1186/1939-8433-6-10.
Ng K L, Mishra S K. 2007. De novo SVM classification of precursor microRNAs from genomic pseudo hairpins using global and intrinsic folding measures.Bioinformatics, 23(11):1 321-1 330, https://doi.org/10.1093/bioinformatics/btm026.
Nicoloso M S, Sun H, Spizzo R, Kim H, Wickramasinghe P, Shimizu M, Wojcik S E, Ferdin J, Kunej T, Xiao L C,Manoukian S, Secreto G, Ravagnani F, Wang X M, Radice P, Croce C M, Davuluri R V, Calin G A. 2010. Singlenucleotide polymorphisms inside microRNA target sites influence tumor susceptibility. Cancer Research, 70(7):2 789-2 798, https://doi.org/10.1158/0008-5472.CAN-09-3541.
Ou J T, Li Y, Ding Z F, Xiu Y J, Wu T, Du J, Li W J, Zhu H X, Ren Q, Gu W, Wang W. 2013. Transcriptome-wide identification and characterization of the Procambarus clarkii microRNAs potentially related to immunity against Spiroplasma eriocheiris infection. Fish & Shellfish Immunology, 35(2):607-617, https://doi.org/10.1016/j.fsi.2013.05.013.
Patanun O, Lertpanyasampatha M, Sojikul P, Viboonjun U, Narangajavana J. 2013. Computational identification of microRNAs and their targets in cassava (Manihot esculenta Crantz.). Molecular Biotechnology, 53(3):257-269, https://doi.org/10.1007/s12033-012-9521-z.
Prakash P, Rajakani R, Gupta V. 2016. Transcriptome-wide identification of Rauvolfia serpentina microRNAs and prediction of their potential targets. Computational Biology and Chemistry, 61:62-74, https://doi.org/10.1016/j.compbiolchem.2015.12.002.
Qi P Z, Guo B Y, Zhu A Y, Wu C W, Liu C L. 2014. Identification and comparative analysis of the Pseudosciaena crocea microRNA transcriptome response to poly(I:C) infection using a deep sequencing approach. Fish & Shellfish Immunology, 39(2):483-491, https://doi.org/10.1016/j.fsi.2014.06.009.
Saunders M A, Liang H, Li W H. 2007. Human polymorphism at microRNAs and microRNA target sites. Proceedings of the National Academy of Sciences of the United States of Amaerica, 104(9):3 300-3 305, https://doi.org/10.1073/pnas.0611347104.
Shastry B S. 2009. SNPs:impact on gene function and phenotype. In:Komar A ed. Single Nucleotide Polymorphisms. Humana Press, Totowa, NJ, USA. p. 3-22, https://doi.org/10.1007/978-1-60327-411-1_1.
Shivdasani R A. 2006. MicroRNAs:regulators of gene expression and cell differentiation. Blood, 108(12):3 646-3 653, https://doi.org/10.1182/blood-2006-01-030015.
Tong C Z, Jin Y F, Zhang Y Z. 2006. Computational prediction of microRNA genes in silkworm genome. Journal of Zhejiang University SCIENCE B, 7(10):806-816, https://doi.org/10.1631/jzus.2006.B0806.
Tüfekci K U, Meuwissen R L J, Genç Ş. 2014. The role of microRNAs in biological processes. In:Yousef M, Allmer J eds. miRNomics:MicroRNA Biology and Computational Analysis. Humana Press, Totowa, NJ, USA. p. 15-31, https://doi.org/10.1007/978-1-62703-748-8_2.
Wan L C, Zhang H Y, Lu S F, Zhang L, Qiu Z B, Zhao Y Y, Zeng Q Y, Lin J X. 2012. Transcriptome-wide identification and characterization of miRNAs from Pinus densata.BMC Genomics, 13:132, https://doi.org/10.1186/1471-2164-13-132.
Xiao S J, Han Z F, Wang P P, Han F, Liu Y, Li J T, Wang Z Y. 2015. Functional marker detection and analysis on a comprehensive transcriptome of large yellow croaker by next generation sequencing. PLoS One, 10(4):e0124432, https://doi.org/10.1371/journal.pone.0124432.
Xu W, Cui Q H, Li F, Liu A Z. 2013. Transcriptome-wide identification and characterization of microRNAs from castor bean (Ricinus communis L.). PLoS One, 8(7):e69995, https://doi.org/10.1371/journal.pone.0069995.
Xu Y C, Chu L L, Jin Q J, Wang Y J, Chen X, Zhao H, Xue Z Y. 2015. Transcriptome-wide identification of miRNAs and their targets from Typha angustifolia by RNA-Seq and their response to cadmium stress. PLoS One, 10(4):e0125462, https://doi.org/10.1371/journal.pone.0125462.
Yang Z H, Wang L. 2011. Regulation of microRNA expression and function by nuclear receptor signaling. Cell & Bioscience, 1:31, https://doi.org/10.1186/2045-3701-1-31.
Yao S M. 2016. MicroRNA biogenesis and their functions in regulating stem cell potency and differentiation. Biological Procedures Online, 18:8, https://doi.org/10.1186/s12575-016-0037-y.
Zheng W B, Liu G Z, Ao J Q, Chen X H. 2006. Expression analysis of immune-relevant genes in the spleen of large yellow croaker (Pseudosciaena crocea) stimulated with poly I:C. Fish & Shellfish Immunology, 21(4):414-430, https://doi.org/10.1016/j.fsi.2006.01.006.
Zhou M, Wang Q H, Sun J, Li X, Xu L D, Yang H X, Shi H B, Ning S W, Chen L, Li Y, He T T, Zheng Y. 2009. In silico detection and characteristics of novel microRNA genes in the Equus caballus genome using an integrated ab initio and comparative genomic approach. Genomics, 94(2):125-131, https://doi.org/10.1016/j.ygeno.2009.04.006.
Zhu Y P, Xue W, Wang J T, Wan Y M, Wang S L, Xu P, Zhang Y, Li J T, Sun X W. 2012. Identification of common carp(Cyprinus carpio) microRNAs and microRNA-related SNPs. BMC Genomics, 13:413, https://doi.org/10.1186/1471-2164-13-413.